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Abstract

Medical imaging methods have become increasingly important in diagnosing diseases

and assisting therapeutic treatment. In particular, early detection of breast cancer is con-

sidered as a critical factor in reducing the mortality rate of women. Within the various

alternative breast imaging modalities being investigated to improve breast cancer de-

tection, microwave imaging is attractive due to the high dielectric property contrast be-

tween the cancerous and the normal tissue and has received significant interest over the

last decade. The investigation into two-dimensional microwave imaging at the Thayer

School of Engineering, Dartmouth College, began in the early 1990’s where the first

clinical microwave imaging system was brought online at the Dartmouth-Hitchcock

Medical Center (DHMC) in 1999.

Although the two dimensional microwave imaging has shown great promise, the im-

age quality is essentially compromised by the various approximations associated with

operating in 2D. In this thesis, we focus on the theoretical aspects of the nonlinear

tomographic image reconstruction problem with particular emphasis on developing ef-

ficient numerical algorithms for 3D microwave imaging. An incremental approach was

devised to assess this progress. The concept of the dual-mesh was generalized and

served as an organizing theme from which the computational efficiency of various for-

ward field modelling methods were investigated. These methods included the 2D finite

element coupled with boundary element methods and the 2D FDTD method with its ex-
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tension to 3D space. Significant effort was spent on optimizing the 3D forward model in

order to reconstruct images efficiently. Additional reconstruction techniques such as the

adjoint method, the nodal adjoint approximation as well as a multiple-frequency dis-

persion reconstruction algorithm were developed to enhance both the speed and quality

of the recovered images. An in-depth analysis of the Jacobian matrix was performed

in the context of investigating various important factors including the resolution limit

and the impact of system parameters on image quality. Additionally, a mathematical

theory encompassing the properties of the phase unwrapping integral and its use with

respect to our log-magnitude/phase form (LMPF) imaging algorithm was developed

and discussed with particular attention to microwave scattering nulls.
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Chapter 1

Introduction to microwave imaging

1.1 Introduction

It is an indisputable fact that both the science and technology have undergone a revo-

lutionary transformation over the last century. The creation of computers has greatly

reshaped both theoretical and experimental science in that computations can bridge the

gap between theories and experiments. On one side they extend the capabilities and

scope of theoretical models into more practical regimes. Large and complex problems

which cannot be solved by analytical mathematics can now be easily solved using nu-

merical techniques. Additionally, low-cost and easily implemented simulations readily

facilitate experimental procedures. With the bridging effect of computational capabili-

ties, the boundaries between theoretical and experimental science becomes even more

vague and their combination facilitates most of the new technological advances.

Among those benefiting from the emergence of computational science, medical

imaging is the primary interest of this thesis. Since the discovery of a “new kind of ray”

by Wilhelm Röntgen over a century ago, medical imaging methods have undergone ex-

plosive proliferation. It is extensively used by researchers in medicine and biology to

3
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unveil countless mysteries of life, or used in clinics by medical practitioners to monitor

normal biological activities, diagnose diseases, or guide the treatment of diseases. The

integration with computational technologies dramatically improves the viability and

performance of many existing imaging modalities. Meanwhile, a large number of novel

imaging methods based on computational models, such as CT, MRI, PET, SPECT etc,

have been introduced and developed which occupy essential positions in the modern

medical imaging armament. Recent trends in medical imaging include imaging meth-

ods that utilize nonlinear physical processes or mathematical models, multi-modality

imaging, integration of imaging facilities with therapeutic devices along with the grow-

ing need to be able to efficiently manage imaging data [68].

Our studies in medical imaging focus specifically on microwave imaging. From

a methodology point of view, microwave imaging is a natural extension of traditional

wave-based diffraction imaging methods. The creation of this technology is not an

isolated event but the direct consequence of a number of related sequential accomplish-

ments. Studies on the dielectric properties of human tissues [171], the advances in

nonlinear optimization and inverse problems combined with cheaply available comput-

ing power are among the necessary requirements for facilitating the development of

this technique. The fusion of these technologies not only created microwave imaging,

but a series of imaging methods exploiting nonlinear processes in contrast to traditional

linearized imaging modalities. Although linear phenomena have unquestionable ad-

vantages due to their simplicity in both modelling and processing, their simplicities

are often conditional, i.e. they are approximate versions of more general and sophisti-

cated non-linear processes. The arrival of the computer age significantly altered the fate

of nonlinear models and provided powerful tools to describe and explore more “com-

plicated” phenomena. As a result, linear assumptions can now be largely discarded
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revealing a more realistic view of the problem. Computational methods for non-linear

models not only provide a better understanding of intricate processes, but also enable

the utilization of these processes to facilitate the daily life.

Given the various issues that have directly or indirectly contributed to the evolu-

tion of microwave imaging, the remainder of this chapter will discuss a range of topics

that illustrate the importance of this work and summarize related previous work. In the

following part of this chapter, we first present a brief introduction to cancer biology,

focused especially on breast cancer, since this is the primary application of our mi-

crowave imaging efforts. A history and current status summary of microwave imaging

is presented followed by the hardware and algorithmic development of tomographic

microwave imaging at Dartmouth College. In the last section of this chapter, we will

list the specific goals of this work along with the paths to meet these goals. Chapter

2 focuses on the mathematical aspects of the problem where 1) tomographic imaging

based on linear methods, 2) nonlinear optimization techniques, 3) image reconstruction

from a statistical perspective, 4) the inverse problem and 5) regularization techniques

are introduced.

1.2 Cell biology of cancer and introduction to breast

cancer

Based on the definition given by the American Cancer Society (ACS), cancer refers

to “a group of diseases characterized by uncontrolled growth and spread of abnormal

cells” [181, 180]. Cancer is the second leading cause of death of the United States and

the world after cardiovascular diseases (CVD). Every year, roughly 7.1 million people

die of cancer, accounting for 12.6% of all global mortalities. Cancer can develop al-
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most anywhere in a human body, such as the skin, marrow, bone, brain, breast, colon,

liver and lung. Cancer can also strike people at any age. Among the various cancers,

roughly 76% are diagnosed for people over 55. However, in all of these cancer cases,

only about 10% are genetically related and approximately 1/3 of the deaths can be

completely avoided with appropriate diet and healthier living styles (such as not smok-

ing and drinking) [180]. Studies on cell biology reveal important mechanisms for the

development of cancer.

1.2.1 Biology of cancer

For human beings and most other living organisms, the cell is the fundamental func-

tional unit for life activities. At any given moment, amazingly sophisticated bio-chemical

or physical processes occur within the cells. These processes produce energy storage

molecules, assemble proteins, translate genetic information with the cells continuously

undergoing creation and self-destruction (apoptosis) all the time. Almost all of these

biochemical reactions are catalyzed with the help of enzymes. An enzyme is a spe-

cial type of protein which can make new proteins or molecules without consuming

itself [109].

Cells differentiate into numerous types (there are roughly 200 types in the human

body) to fulfill a diverse range of functions. However, most of them share very similar

working mechanisms. Simply speaking, a cell is responsible for maintaining a long

string of genetic information and manifestation. DNA (deoxyribonucleic acid) is where

the genetic information is stored (for a virus, the RNA - ribonucleic acid - stores this

information). A single strain of a double helix ladder encodes almost all the secrets of

life [109].

The DNA is only one part of the cell structure required to conduct its normal life
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cycle. A typical process of fabricating proteins or enzymes begins with the translation

of the DNA information to messenger RNA (mRNA) by the RNA polymerase (an en-

zyme) which is subsequently sent to ribosome. The ribosome reads the sequence from

the mRNA and assembles the required amino acids (roughly 20 types) one at a time

and binds them into a functional molecule, i.e. protein.

A normal healthy cell has a typical life cycle [109, 21] which is depicted in Figure

1.1. After the cell has been formed, it enters a relatively long and stable period, the G1-

phase. During this period, the cell performs various functions, synthesizes proteins and

grows rapidly. Following the G1 phase, the cell enters the S-phase where it begins to

duplicate its DNA and prepares for the next cell division. A short G2-phase then allows

the cell to assemble the enzymes needed for the following division stage. The actual

cell division occurs in the M-phase where a single cell divides into two identical cells.

Healthy cells constantly “signal” each other to control the speed of division. These

signals can be carried by special proteins (including enzymes), hydrophobic molecules

or various ions. Eventually, depending on signals from other cells and the environment,

a cell stops growing and diverges into a self-destruction phase - apoptosis.

M-Phase

G2-Phase

S-Phase

G1-Phase

Apoptosis

Figure 1.1: Life cycle of normal cells

Under abnormal conditions, some cells lose the ability to respond to these signals.

The result of these un-regulated fast growing cells is a mass of functionless tissue - the
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tumor (neoplasm). A fully grown tumor imposes pressure to the surrounding tissues or

organs and disrupts their normal activities. More seriously, some tumors can release the

malfunctioned cells through blood vasculature and lymph systems and spread them to

other parts of the body (metastasize). Tumors that can metastasize are called malignant

tumors or cancers, while those that cannot are benign tumors. The reasons for the cell’s

inability to respond to the environmental cell signals may be attributed to mutations

induced by chemical compounds (carcinogens), high power radiation, infections by

virus or bacteria, or even inherited genetic defects [180].

1.2.2 Breast cancer

Some cancer rates correlate to various population demographics, which can result from

distinct cultural and environmental differences. For example, liver cancer is more fre-

quently diagnosed in China than in the United States, while breast cancer has a high

incidence rate for women in the US but a relatively low rate in China.

Figure 1.2: Healthy breast anatomy.
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Breast cancer is the second leading cause of women mortalities in the US. There are

several types of breast tumors and most of them start in the duct and lobular tissues of

the breast (Figure 1.2). Common benign breast tumors include fibrosis, the growth of

scar-like tissue, and cysts, which are abnormal liquid-filled sacs. Early stages of malig-

nant tumors often appear as ductal carcinoma in situ (DCIS) and lobular carcinoma in

situ (LCIS). The most common malignant breast tumors include infiltrating (invasive)

ductal carcinoma (IDC) and infiltrating (invasive) lobular carcinoma (ILC) which be-

gin growing inside the epithelium of the ducts and milk-producing glandular tissue and

spread to surrounding fatty tissue and other parts of the body. Among all breast cancer

cases in the US, IDC accounts for roughly 80% while ILC accounts for only 5% of the

total. Other uncommon breast cancers include inflammatory breast cancer (1%-3%),

medullary carcinoma (5%), and tubular tumor (2%) [181].

It has been reported that detection of breast cancer in early stages is essential for

reducing the breast cancer mortality rate [82]. The gold standard for confirming the

presence of breast cancer is biopsy which requires the removal of tissue from a patient’s

breast. Among the various noninvasive means of breast cancer diagnosis, mammogra-

phy is recommended. Other choices include breast ultrasound, MRI and PET. Of these

modalities, mammography uses ionizing radiation which is a potential threat to health

with increased dose. Additionally, the compression in mammography is often uncom-

fortable for the patient. The expense for MRI or PET is quite high and, therefore, are

less frequently used. A comprehensive list of modalities used for breast imaging can

be found in [136].
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1.3 Microwave imaging

This section is intended to provide a general introduction and literature survey for mi-

crowave imaging. The overview subsection covers the fundamental rationale of this

modality. In the second subsection, we discuss the history and the evolutionary path

of this technique especially with respect to the diversity of systems displayed or stud-

ied. The following hardware subsection focuses on the imaging systems developed at

Dartmouth College and demonstrates the basic components and principles used for data

acquisition. In the last subsection, the general procedure for the image reconstruction

is outlined which sets the stage for the latest developments comprising this thesis.

1.3.1 Overview

Microwave imaging (MWI) is an active wave-based non-invasive imaging method.

First, microwave imaging uses the scattering phenomena of microwave signals as the

mechanism for imaging the biological body in contrast to particle-based imaging meth-

ods such as PET, SPECT and nuclear medicine (radionuclides, etc.). Second, in mi-

crowave imaging, there is no need to deliver the imaging device to the interior of the

body via surgery since the microwave signal can penetrate the body and is essentially a

noninvasive imaging modality.

Microwave radiation comprises a fraction of the electromagnetic waves spectrum

with frequencies ranging from approximately 1 GHz to 30 GHz (UHF is generally

considered the frequency range just below it) [100]. It can be used to penetrate the

body and retrieve structural and functional information of the tissues via the scattered

signals. The physical quantities being imaged in microwave imaging are the dielectric

properties, i.e. the permittivity, ε, and the conductivity,σ, of the tissues. There is a third
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property, the magnetic permeability, µ. Fortunately, most of the biological tissues are

non-magnetic, implying that the tissue permeability is identical to that of free-space.

The presence of inhomogeneities in the dielectric properties effects the propagation

patterns of the microwave signal throughout the tissue by altering its amplitude, phase

or polarization and results in distortions of the microwave field. From an alternative

view, the distortions of the field encode the spatial distribution of these dielectric prop-

erties. The distorted fields can be measured by microwave detectors, i.e. antennas and

receiver electronics, to allow the extraction of the structural information with the help

of sophisticated reconstruction algorithms.

The dielectric properties reflect the macroscopic electrical property characteristics

of the tissue, implying that they are bulk representations of numerous microscopic phys-

ical or bio-chemical processes. In general, the value of the permittivity is related to the

molecule dipole moment per volume [166], while the conductivity is related to the free-

path length and speed of the electrons inside the material. The value of the dielectric

properties can be used as indicators for the microscopic environment of the cellular or

molecules processes. When the biological tissues undergo physiological changes, such

as those due to the presence of diseases, or those induced by external stimulations, or

even by variations in the environmental temperature, the microscopic processes can de-

viate from their normal state and impact the overall dielectric properties. By monitoring

the variations of the dielectric properties with respect to those for the healthy tissues,

one may be able to diagnose abnormalities or use the information for treatment of the

disease. This is the basic rationale for microwave medical imaging.

The dielectric properties of human tissues have been studied for more than 100

years [59]. The properties undergo significant changes over a wide frequency spectrum

with several dielectric relaxation stages impacting the property the most. During 1950s,
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Schwan and his collaborators conducted a series of experiments and published a num-

ber of papers tabulating their results [173]. More studies were performed during 1980s

and 1990s. Published reports included studies by Stuchly and Stuchly [186], Pethig

[156], Durney et al. [44], Foster and Schwan [55] as well as a summary by Duck [43].

In 1996, Gabriel and Gabriel [59, 171, 60] published their measurements of more than

20 types of human tissues over the frequency band from 10 Hz to 20 GHz. A sample

plot of these curves drawn from the data available at their website [88] is shown in

Figure 1.3.

Several observations can be drawn form the curves in Figure 1.3.

1. The property dispersion of biological tissues is not a simple linear relationship

with respect to frequency. Instead, a staircase shape feature is observed which

can be explained with a Cole-Cole multiple relaxation mechanism;

2. Different tissues may have significantly different permittivity and conductivity

properties. The lowest dielectric values are found in bone, fatty tissue and lung.

In contrast, blood and muscle have much higher permittivities and conductivities

due to the abundance of water and free ions.

In terms of the dielectric properties of female breast tissue, Chaudhary et al. [29],

Surowiec et al. [187], Campbell et al. [22] and Joines et al. [94] performed ex vivo

measurements over various frequency bands. The following plot (Figure 1.4) shows the

permittivity and conductivity curves for normal breast tissue as well as for malignant

breast tissues.

It is interesting to note that there is a significant variation in the reported dielectric

properties for overlapping frequency ranges of the different studies. This is probably

due to the heterogeneous nature of the breast (adipose and fibroglandular tissue) and the
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Figure 1.3: Measured dispersion curves of selected human tissues.
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Figure 1.4: The dielectric properties of malignant vs. normal breast tissue (reproduced
from [53])

associated variations in water content that drive their properties. It is quite significant

that the curves for the breast tumor tissues deviate from those of the normal breast

tissue especially in the microwave frequency band. A similar behavior of the malignant

to normal tissue was also found between ischemic versus normal heart muscle [178] and

normal bone versus leukemic marrow [37]. These discoveries have led to the studies

utilizing microwaves to detect tumors by reconstructing dielectric profiles.

The experiments of Gabriel and Gabriel [171] and many other studies utilized ex

vivo tissue, meaning the tissues used in the measurements were excised from the body

but measured as freshly as possible (typically within 24-48 hours after death for human

tissues in Gabriel’s study). Recent in vivo breast tissue measurements at Dartmouth

College have demonstrated that the dielectric properties of the in vivo tissue, tissue in

the living entity, are noticeably different from the ex vivo measurements reported by

previous researchers and are most likely due to the loss of blood [54].

The high contrast demonstrated in the previous examples provides significant ra-
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tionale for the advantages of microwave imaging in breast cancer detection. However,

there are other advantages. As previously mentioned, microwave imaging uses non-

ionizing radiation which is significantly safer than ionizing radiation, i.e. X-rays used

in mammography. The low illumination power levels used in microwave imaging also

make regular screening possible. Finally, no compression is needed in microwave imag-

ing making the exams more comfortable than mammography.

Another advantage of microwave imaging is low cost. The expense for building

a microwave imaging system could potentially be far less than that for CT and MRI.

With the widespread use of microwaves in everyday life, the manufacturing costs of

essential components have decreased dramatically. These microwave applications in-

clude cell phones (frequency: CDMA 1.880 GHz-1.990 GHz, TDMA: 824.04 MHz-

893.7 MHz), wireless networks (802.11a: 5 GHz, 802.11b: 2.45 GHz), microwave

ovens (2.450 GHz) and GPS tracking systems (L1: 1.57542 GHz, L2: 1.2276 GHz)

[116]. The boom of microwave related technologies has greatly stimulated the growth

of microwave component and system design and manufacturing industry. These com-

ponents are becoming smaller, cheaper and more powerful.

Not only can we recover tissue dielectric properties from MWI, other physical or

biological properties that have strong correlations to dielectric properties can also be in-

ferred from the reconstructed dielectric images. At Dartmouth College, the thermal de-

pendence of the dielectric properties have been studied by Meaney et al.[27, 123, 154,

153] since 1993. The studies utilize the almost linear dependence of the tissue conduc-

tivity with temperature. By reconstructing the dielectric property images in near real-

time, the variations of the temperature profiles can be retrieved from the pre-calibrated

dielectric-temperature relationship. Temperature monitoring is especially necessary in

hyperthermia. In hyperthermia, the malignant tissue is heated to facilitate cancer cell
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death in conjunction with radiation treatment. Precise control of the temperature is of

great importance for both efficient treatment and minimizing the damage to normal tis-

sue. Non-invasive microwave thermometry is a good candidate for use in conjunction

with hyperthermia treatment.

1.3.2 History

Initial efforts in developing an active microwave imaging system can be traced back to

a paper by Jacobi, Larsen and Hast in 1979 [89]. Inspired by studies in military under-

water telecommunication techniques, they suggested a microwave measurement system

by submerging an antenna into water which was shown to be promising for exploring

bio-systems. They demonstrated that significant improvements could be achieved in

the impedance characteristics of the antennas, energy coupling efficiency as well as the

antenna aperture size by simply immersing the antenna system into a high permittivity

medium – water. The paper outlined the attractive blueprint of an active noninvasive

microwave interrogation system which could provide resolution better than decimetric

wavelength. Shortly after the publication of that paper, they reported the successful

implementation of such a system in imaging biological tissue – an isolated canine kid-

ney [103]. Considerable interests in studying microwave tomography were stimulated

by the promising results demonstrated by Jacobi and Larsen. These early studies in-

cluded algorithmic studies by Maini et al. [119], Rao et al. [163], Ermert et al. [46],

Adams et al. [1], Pichot et al. [157], as well as attempts at fabricating actual microwave

imaging systems, of which the quasi-real-time system using a planner antenna array de-

veloped by Bolomey et al. [13, 14] and the cylindrical array system by Broquetas et al.

[20] are of particular importance.

The proliferation of studies into microwave imaging continued until the beginning
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of the 1990s when two new advances accelerated the developmental process. The first

advance was in the development of iterative reconstruction algorithms. Efficient algo-

rithms were proposed for solving the nonlinear reconstruction problems which were

previously solved by limited linear algorithms. The distorted Born iterative method

(DBIM) developed by Chew et al. [34] and Newton-Kantorovich method (or Gauss-

Newton method) developed by Joachimowicz [169, 93] greatly improved the overall

image quality (these two methods were later shown to be equivalent [167]). Interest-

ingly, with these nonlinear algorithms, the spatial resolution of the image was limited

by the signal to noise ratio (SNR) rather than the half-wavelength diffraction limit (see

Section 2.2). With high quality measurement data, microwave imaging can reconstruct

objects with diameters down to 1/7 - 1/10 of the wavelength [133, 134, 32] which is

also referred to as the super-resolution. On the other hand, more potential applications

of microwave imaging were discovered and several research groups became involved

in these efforts. A number of prototype systems were developed for various purposes,

which included the imaging system built by Azaro et al. [2, 152] as well as Otto and

Chew et al. [149] for algorithmic research, a tissue blood content monitoring system

by Hawley (1991), the multiple-frequency microwave thermometry system by Bardati

et al. [4], the CP-MCT (Chirp-Pulse Microwave CT) systems for subsurface thermal

imaging by Miyakawa et al. [131], the focal plane imaging system by Goldsmith et

al. [64], the resonant dielectric sensor for localization of breast tumors by Preece et al.

[160] and Pothecary et al. [159], and the 20-channel monolithic dipole imaging array

by Hsia et al. [85]. In terms of developing efficient imaging methods for breast cancer

diagnosis, Meaney et al. at Dartmouth College (USA) developed a tomographic imag-

ing system which was initially designed for non-invasive thermometry [127]. Over the

course of three major updates, the system became the first laboratory microwave imag-
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ing system available for clinical use in breast cancer imaging [122]. Meanwhile, Bond,

Hagness and Fear et al. are developing a reflection-based breast tumor imaging systems

utilizing confocal microwave imaging (CMI) at the University of Wisconsin Madison

(USA) and the University of Calgary (Canada) [73, 74, 15, 52, 53]. Liu et al. at Duke

University (USA) is also developing a tomographic breast imaging system [115]. Par-

allel efforts were also reported in microwave cardiac imaging by Semonov et al - 2D

[175] and 3D [176] imaging systems for the heart as well as whole body imaging.

These systems varied significantly in their configurations due to the distinct scopes

of their applications. These differences include antenna selection, operating frequen-

cies, wave forms, source/receiver number and spatial arrangement. Waveguide an-

tennas were used in the systems developed by Jacobi et al. [89, 103], Bolomey et

al. [13], Semenov et al [174, 178, 177], Mallorqui et al. [120] and Miyakawa et

al. [131, 132], while simple monopole antennas were extensively exploited by Meaney

et al. [122, 123] and Li et al [111]. Patch antennas were reported for the imaging sys-

tems by Hsia et al. [85] and Hagness et al. [74] and spiral antennas for passive heat

monitoring by Jacobsen and Stauffer [90]. In terms of operating frequencies and wave

form, most research groups used time-harmonic waves ranging from 300 MHz to 3 GHz

for tomographic imaging purposes while broad-band pulse signals were found in CMI

system by Hagness et al. [74] , as well as chirp signals used by Miyakawa et al. [132] in

their CP-MCT system (the pulse data was usually synthetically extracted from multiple

sets of time-harmonic data).

Numerous experiments have been successfully conducted in simulations, phantoms

along with ex vivo and in vivo measurements on small animals and patients to demon-

strate the viability and performance of microwave imaging. In simulations, 2D recon-

structions have been reported by Joachimowicz et al. [93], Caorsi et al. [24], Semenov
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et al. [175] and Meaney et al. [127], among others. Phantom and ex vivo image re-

constructions have also been reported by Semenov et al. [175, 176] and Meaney et al.

[124, 125]. Preliminary in vivo experiments were presented by Semenov et al. [177]

for imaging a canine heart and by Meaney et al. for thermal imaging the torso of small

pigs [123] and the human breast [122].

In parallel, significant efforts have been made in the development of efficient re-

construction algorithms. While microwave scattering is a three-dimensional vectorial

phenomenon, 2D reconstruction algorithms are quite prevalent mostly due to their sim-

plicity. In early 2D tomographic implementations, diffraction approaches were applied

to linearize the reconstruction problem utilizing primarily Born and Rytov approxima-

tions. These were appealing at the time because images could be produced efficiently,

given the limited computational power available. They were shown to be effective when

the scattering objects were electrically small or when the contrast with the background

was minimal, which is generally not the case for imaging of biological tissue. Methods

for solving nonlinear partial differential equations (PDE’s) such as finite element (FE)

and finite-difference time-domain(FDTD) methods appear to be more appropriate mod-

els for the EM scattered fields given the significant advances in improved computational

capabilities.

As reconstruction strategies advanced, iterative methods based on integral equations

such as the distorted Born iterative method (DBIM), Born iterative method (BIM) [34,

31] and local shape function (LSF) [149] have been implemented along with approaches

based on differential equations such as the Newton-Kantorovich [93] method. The non-

linear scattering nature of microwave signals as well as the ill-posedness of the inverse

problem present significant challenges in the development of appropriate algorithms.

Depending on the number of unknowns and the size of the reconstruction problem, the
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computational time for solution convergence varied from a few minutes [115, 51] to

hours or even days [177]. Therefore, many of the current microwave imaging systems

used off-line computations due to the extensive computer load. Various attempts were

made to reduce the reconstruction problem complexity by taking into account differ-

ent approximations and simplifications, such as the dual-mesh scheme [155], confor-

mal mesh reconstruction [110], adjoint technique [50] and frequency-hopping recon-

struction algorithms [33]. The development of global optimization algorithms such

as neural-network (NN) technique, simulated annealing (SA) algorithm), genetic algo-

rithms (GA) have also been applied to microwave image reconstruction [10, 24, 25]. It

has been recognized that the computational speed of the forward problem in iterative

approaches is the most time consuming part of the problem [189, 50]. Techniques such

as iterative block solvers and the adjoint method [18] will be essential as 3D imaging

approaches are developed.

1.3.3 Microwave imaging system at Dartmouth College

Led by Professors Keith Paulsen and Paul Meaney, the microwave imaging group at

the Thayer School of Engineering, Dartmouth College (USA), started the study on mi-

crowave imaging in the early 1990s. After years of preliminary studies on material, an-

tenna design and reconstruction algorithms, the first laboratory-scale prototype system

was fabricated in 1995. A four-detector monopole antenna array was used for the re-

ceivers. Modulated continuous-wave (CW) signals were transmitted from water-loaded

waveguide antennas operating over the frequency between 300 MHz and 1.1 GHz. A

superheterodyne technique was used as the scheme to extract the phase and amplitude

information from the high frequency signals (see Section 1.3.4). Multiple phantom

measurement data were successfully acquired and associated images reconstructed by
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a Gauss-Newton reconstruction algorithm previously developed by Paulsen et al. (for

more details on this algorithm please refer to Chapter 3).

In the year 1999, a new system was built for breast imaging based on the experience

learned from the prototype system and was referred to as the “first generation” system.

A picture of the system is shown in Figure 1.5. In this system, functionalities of both

transmitting and receiving signals were combined into each antenna channel (i.e. the

transceiver); the state of transmitting or receiving was dictated by an electronic switch-

ing network. All 16 monopole antennas could be used to transmit microwave signals

with the 9 antennas on the opposite half circle of the array used to receive scattered

field signals. Thus, the total amount of single plane measurement data for this system

was 16 × 9 = 144 data points (due to the reciprocity relationship, the amount of in-

dependent measurement data was half of that total, i.e. 72). Additionally, the antenna

array could be moved up and down manually via a hydraulic jack. This facilitates the

collection of multiple planar data for 3D objects. The speed of the electronics were also

improved significantly. For a typical session, this system required roughly 30 minutes

for seven planes of data on two breasts while the prototype system needed several hours

to acquire the same amount of data.

With this first generation system, a number of phantom, small animal and patient

studies were conducted. The phantoms included both solid and liquid cylinders with

inclusions of various sizes. Solid spherical phantoms were also measured to study the

3D effect of the measurement system. The dielectric properties of these phantoms range

from εr = 5 and σ = 0.1 S/m for bone-fat phantoms to εr = 50 and σ = 1.3 S/m for agar

cylinders. A series of in vivo animal experiments were performed for demonstrating the

clinical promise of microwaves in non-invasive thermal monitoring during hyperther-

mia treatment. A living piglet with a hot water tube surgically inserted through its
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Figure 1.5: Photograph of the “first generation” microwave imaging system at Dart-
mouth College

abdominal cavity was imaged in a series of experiments. The inserted tube supplied

saline at different temperatures with the measurement data collected at each [123]. The

reconstructed images showed very consistent variation of the dielectric properties with

respect to temperature. The anatomy of the piglet was also successfully reconstructed

(see Section 3.7.3 for more details).

In these phantom and animal studies, 0.9% saline was primarily used as the cou-

pling medium instead of pure water as originally suggested by Jacobi and Larsen. The

lossiness of the saline reduced the reflections from the illumination tank walls while

the signal intensity was still well above the noise floor even with the added attenuation.

Starting in 2001, several other possible coupling media were also investigated including

mixtures of glycerin and water which has shown great promise [128].

In 2002, an entirely new system was fabricated primarily for the purpose of breast

imaging and was referred to as the “second generation” system. A number of major

upgrades made the new system attractive and efficient. These improvements are sum-

marized in Table 1.1. The first major difference was the implementation of the parallel

data acquisition (DAQ) strategy. This strategy allowed for the collection of measure-
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Table 1.1: Differences between the first and second generation imaging systems at
Dartmouth College

Differences 1nd Generation 2st Generation
Detection scheme serial parallel
Coupling medium saline glycerin:water
Measurement time 12.5 minutes for

12,096 data points
10 minutes for 33,600
data points

Operating frequency 300 MHz-1.1 GHz 500 MHz-3 GHz
Antenna positioning manual automatic
Receiver number 9 15
Tank volume 64 liters 33 liters

ments from multiple receivers simultaneously. A high speed 16-bit DAQ board was

integrated with a variable gain amplifier and controlled by a computer. The improve-

ments in the data acquisition method and hardware resulted in the dramatic reduction

in the measurement time while acquiring significantly more data. The upper end of

the system operating frequency range was also extended from 1.1 GHz to 3 GHz. The

capability of collecting higher frequency data may provide more information about the

target and also the opportunity to study image resolution and quality with respect to

frequency.

Another major modification was the coupling medium. Glycerin/water solutions

replaced the high-attenuation saline as the coupling medium. The advantages provided

by the glycerin solution included 1) less loss than saline producing less attenuation of

the microwave signals which improved the measurement SNR and 2) the complete sol-

ubility of glycerin in water provided a means of tuning the coupling medium relative

permittivity over a range of 10 to 80 by simply adjusting the solution concentration.

The second feature is especially attractive for breast imaging in clinical applications.

Figure 1.6 shows the permittivity and conductivity dispersion curves for glycerin/water

solutions as well as those for distilled water and saline. It is clear that for higher water

concentrations, the medium is lossier with much higher permittivity values. Interest-
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ingly, it has been found through our own patient studies that the average dielectric prop-

erties for breast tissue varies significantly with respect to the age and breast density of

women. In general, breasts of younger women have more water content and higher den-

sity which correlate with higher values in dielectric properties. With increase in age, the

percentage of fatty tissue increases and the density of the breast decreases along with

the dielectric properties. The adjustable dielectric properties of the glycerin solutions

offer the capability of matching the impedance not only between the medium and the

antennas but also between the medium and breast. Finally, the glycerin solutions are

biostatic, making them safe for patient examines.
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Figure 1.6: The dielectric properties of different coupling media [128]

Besides the improvements in the DAQ system and coupling medium, automatic

controls of several routine tasks were more extensively integrated into the system for

improved efficiency. For improved management of the coupling medium, a separate

fluid management system (FMS) was built to pump the liquid back and forth between

the medium reservoir and the illumination tank for re-use of the liquid for multiple ex-

ams. An ultraviolet (UV) light sterilizer was also installed for improved patient safety.

In addition, a computer-controlled high-precision linear actuator was utilized to control

the vertical positions of the antenna array. A photograph of this system is shown in
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Figure 1.7.

Figure 1.7: Photograph of the second generation microwave imaging system at Dart-
mouth College

Beginning in year 1999 (also including exams using the first generation system),

the Dartmouth imaging system began clinical trials at Dartmouth Hitchcock Medical

Center (DHMC). So far, more than 200 patients have participated in the imaging stud-

ies. These studies included a normal breast study (24 patients), abnormal breast study

(malignant tumor cases - 8 , benign abnormality cases - 29), menstrual cycle study (8

women - 4 sessions each) and a MWI/MRI co-registration study (6 patients). In addi-

tion, an on-going blinded study has currently enrolled over 120 patients. The images

reconstructed from these studies have demonstrated impressive correlations in compar-

ison with the clinical information and results from other Dartmouth alternative imaging

modalities (near infrared imaging - NIR, and electrical impedance tomography - EIT).

1.3.4 Principle of data acquisition in microwave imaging

The basic components of the microwave imaging DAQ system are illustrated in the

diagram in Figure 1.8. In general, the system is divided into three major functional
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modules: the microwave source, the antennas and the acquisition and processing unit.
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Figure 1.8: Diagram of the data acquisition (DAQ) scheme of the microwave imaging
system at Dartmouth.

The synthesized microwave source provides high quality electromagnetic waves at

different frequencies. The generated signals are coupled into a wave guiding system

and undergo a series of processes, such as amplification, mixing, filtering and divid-

ing. At the end of the wave guiding system are the antennas. The antennas are the

interfaces between the microwave circuitry and open space. Electromagnetic waves

are radiated into space carrying the signal information. The radiation capability of an

antenna depends on its geometrical shape and material. In general there are two types

of antennas, the isotropic antenna and the directional antenna. An isotropic antenna ra-

diates microwave signals equally in all directions while a directional antenna transmits

the microwave signals in specific directions with significantly reduced power level in

the others. Roughly speaking, the larger the surface area of the antenna, the more direc-

tional the radiation pattern will be. Parabolic reflection antennas, open-ended waveg-

uides, horn antennas and large antenna arrays can have very narrow radiation beams in

specific directions, while simple radiating elements such as wire antennas are used for

non-directional radiation in such applications as the cell phone base stations, wireless

networks.
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The transmitted microwave interacts with the target in the space by means of re-

flection, attenuation and diffraction. The scattered EM field is then collected by the

receiver antennas through electromagnetic induction. Due to the reciprocity, the induc-

tion sensitivity at different directions of a receiver antenna is exactly the same as the

radiation capability of the antenna in those directions. The receiver antennas convert

the spatial wave into high frequency signals which are further amplified and filtered to

extract the desired information.

It is quite difficult to process the current signals directly at microwave frequency.

Practically speaking, most commercially available DAQ boards only operate up to sev-

eral hundred kiloherz. A superheterodyne method [161] is a commonly used receiver

scheme to convert a high-frequency signal into a lower-frequency signal while preserv-

ing the amplitude and phase information. The following is a short introduction to this

scheme.

Assume that the signal from the RF source (S 0) has frequency ωRF (which is a

microwave frequency). Signal S 0 is split into two identical components, S A and S B,

which have the same frequency ωRF. S A is sent to a transmitting antenna and radiated

into space, while the other signal, S B, is multiplied by an intermediate frequency (IF)

signal with frequency ωIF (in our case, ωIF = 2 kHz). The resulting signal can be

expressed as

S MIX = S B × S IF

= AB cosωRFt × AIF cosωIFt
= 1

2 (ABAIF) (cos (ωRF + ωIF)t + cos (ωRF − ωIF)t)
(1.1)

where AB and AIF are the amplitudes of S B and S IF, respectively. S MIX contains two

frequencies, the lower side band is selected by a band pass filter (BPF) as the local

oscillator (LO) signal and sent to the receiver side. (Note that in practical situations,
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some of the original S B leaks through the mixer and also needs to be filtered). The LO

signal is denoted as

S LO = ALO cos (ωRF − ωIF)t (1.2)

The transmitted signal S A interacts with the unknown target and then is received by

a receiver antenna where the received signal is denoted as S RF in the form of

S RF = p cos (ωRFt + φ) (1.3)

where p is the amplitude and φ is the phase. Then S RF is mixed with S LO which results

in
S RF × S LO = p cos (ωRFt + φ) × ALO cos (ωRF − ωIF)t

= S 1 + S 2
(1.4)

where
S 1 =

pALO
2 cos ((2ωRF − ωIF)t + φ)

S 2 =
pALO

2 cos (ωIFt + φ)
(1.5)

Note again that there is some leakage of the RF and LO frequencies which must be

filtered.

In the two signals, S 2 is centered at ωIF which is a much lower frequency than the

original microwave frequency ωRF while both the amplitude and phase information are

contained in S 2. A Fourier transform is subsequently applied to S 2 to yield the complex

form representation S̃ 2 by

S̃ 2(ωIF) =
∫ 2π

0 S 2(t) exp (− jωIFt)dt (1.6)

from which the amplitude and phase information can be extracted.
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1.3.5 Overview of the image reconstruction algorithm

The EM field components utilized in the image reconstruction algorithms are spatial

distributions with their associated time dependence. If the field is excited by a time-

harmonic source, the time dependence is then replaced by frequency. In this case, the

problem is referred to as a “frequency domain” problem, otherwise, a “time domain”

problem. Additionally, the distributions of the fields also depend on the dielectric prop-

erties of the propagating medium. The relationship between the dielectric properties

and the fields are Maxwell’s equation (see Chapter 3 for more details). When the di-

electric property changes, so does the EM field distribution. From that point of view,

the EM field components are functions of the dielectrics. Since the dielectric proper-

ties themselves are functions of space and frequency, it is appropriate to say the fields

are functionals (functions with another function as the independent variable) of the di-

electrics.

Assuming the electric field ~E is measured at the receiver, the measured field can be

expressed in the functional form as E(~r, ω, ε(~r, ω), σ(~r, ω)) where functions ε(~r, ω) and

σ(~r, ω) are the unknown distributions of permittivity and conductivity, respectively. ~r

is the spatial coordinate and ω is the angular frequency. Very often, the relationship

between the dielectric properties and the electric field can be explicitly expressed by an

integral equation as [100, 31, 87]

E(~r, ω, k2(~r, ω)) = Einc(~r, ω, k2(~r, ω)) + Esca(~r, ω, k2(~r, ω))
= Einc(~r, ω, k2(~r, ω)) +

∫

Ω
G(~r,~r′, ω)k2(~r′, ω)E(~r′, ω, k2(~r′, ω))d~r′

(1.7)

where k2(~r, ω) is referred to as the square complex wave number defined by (assuming
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exp( jωt) time dependence)

k2(~r, ω) = ω2µε(~r, ω) − jωµσ(~r, ω) (1.8)

Ω is the spatial domain, G(~r,~r′, ω) is the Green’s function, Einc and Esca are the inci-

dence and scattered fields, respectively. Note that the incidence field Einc is typically

known for most scattering problems. Equation (1.7) is called a Fredholm integral equa-

tion of the second kind [79] because the field functional, E, appears on both sides of the

equation. To evaluate the electric field from (1.7), one common treatment is to apply

the Born approximation [31, 95], which assumes that the scattered field is weak enough

so that the total field, E, can be approximated by the incident field, Einc. In this case,

(1.7) can be re-written as

E(~r, ω, k2(~r, ω)) = Einc(~r, ω, k2(~r, ω)) +
∫

Ω

G(~r,~r′, ω)k2(~r′, ω)Einc(~r′, ω, k2(~r′, ω))d~r′

(1.9)

which is essentially a Fredholm integral equation of the first kind because the unknown

E appears only on the left side of the equation. Equation (1.9) represents a linear

relationship in the functional space which can be solved easily with either analytical or

numerical techniques.

Since the measurement data are known only at discrete receiver locations, for in-

stance, {~ri}Nr
i=1 = {~r1,~r2, · · · ,~rNr} where Nr is the number of measurement data, the pur-

pose of the image reconstruction is to recover the two functions ε(~r, ω) and σ(~r, ω) such

that the electric fields E(~r, ω, ε(~r, ω), σ(~r, ω)) computed from the forward model match

that of the actual measurements at the receiver sites {~ri}Nr
i=1. Written in mathematical
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form, we need to solve for ε(~r, ω) and σ(~r, ω) from the following equation:

E({~ri}, ω, ε(~r, ω), σ(~r, ω)) − EM({~ri}, ω) = 0 (1.10)

where EM is the measured E field.

This is essentially a root-finding problem in the functional space. There are multiple

difficulties in solving this equation: 1) the relationship between the dielectric proper-

ties and the fields are not linear unless certain approximations are applied such as the

Born or Rytovs [95, 31] approximation; 2) the solutions to this equation may be non-

unique due to the nature of the reconstruction (inversion of a compact operator, refer

to [104, 138]); 3) the measurement data are contaminated by noise such that exact

equality is not possible and 4) the evaluation of the solution is natively sensitive to the

random noise presented in the measurement (ill-posedness, see Section 2.4). Attempts

to obtain an analytical solution are impractical given these difficulties and we must

resort to numerical techniques. To deal with the first three difficulties, one needs to

convert the root-finding problem into a nonlinear optimization problem (Section 2.3);

and regularization techniques should also be implemented to account for the fourth

difficulty (Section 2.4).

Written in mathematical form, the optimization problem can be formulated as fol-

lows

min
ε(~r,ω),σ(~r,ω)

F
(

E({~ri}, ω, ε(~r, ω), σ(~r, ω)),EM({~ri}, ω)
)

(1.11)

where functional F (·, ·) is referred to as the norm functional which measures the differ-

ences between the measured field and the predicted measurement computed from the

model. A simple and quite popular selection for F is to use the sum-of-square func-

tion, i.e., for the discrete measurement problems, the above optimization problem can
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be written as

min
ε(~r,ω),σ(~r,ω)

||E({~ri}, ω, ε(~r, ω), σ(~r, ω)) − EM({~ri}, ω))||2 (1.12)

If the noise probability model is some form other than Gaussian in the optimization

(1.12), F (·, ·) can be chosen as the likelihood function or other probability functions.

Recall that this optimization problem is sensitive to noise or ill-posedness. To re-

cover a meaningful solution from the optimization problem (1.12), the object func-

tion in (1.11) needs to be altered or constrained in order to reduce or remove the ill-

posedness. This is generally referred to as a regularization technique. A general form

to problem (1.11) with the consideration of regularization is written as

min
ε(~r,ω),σ(~r,ω)

F (E,EM) + G(E,EM) (1.13)

where G(·, ·) is called the smoothing norm [77] which is used to leverage the balance

between ill-posedness and the measurement information. A further discussion on the

selection of regularization and the execution of the optimization can be found in Section

2.4.

From a signal and system perspective, the reconstruction problem is also referred

to as the inverse problem, in contrast to the forward problem. In general, there is no

clear-cut boundary between the two-types of problems. Roughly speaking, we call the

problems of estimating the properties of an unknown system from known input and the

measurement as the inverse problem, while computing the output from a known inputs

and system properties is called the forward problem. Mapping these concepts into

microwave image reconstruction problem, the dielectric distributions are the properties

of the system if we consider the structure of the target as a system. With a known target,
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i.e., given the dielectric property distributions, the evaluation of the scattered field at the

known source by solving the forward model (in microwave imaging, the forward model

is Maxwell’s equation or the wave equation as explained in Section 3.2.2) is called the

forward problem whereas the optimization problem (1.13) is the inverse problem. As

one may have noticed, the evaluation of the inversion requires that the field values

be solved for at the receiver sites from the model, i.e. the evaluation of the forward

problem.

1.4 Hypotheses and aims

In short, the primary goal of this study is to develop efficient reconstruction algorithms

for microwave imaging. By “efficient”, we refer to two criteria, i.e. the speed of the

reconstruction and the quality of the resultant images. In this section, we outline a road

map and the specific goals to achieve this general aim.

The underlying hypotheses of developing these algorithms are based on previous

studies in both theory and hardware developed at Dartmouth College. These hypotheses

include:

• Improved model match leads to a reduction of image artifacts and improved con-

vergence behavior;

• Improved understanding of the measurement data independence is important to

the hardware design and reconstruction strategy;

• Image reconstruction benefits from an enriched data set;

• Combination of low and high frequency measurement data can improve the ro-

bustness and image quality of the reconstructions.
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As a result, we proposed four specific aims to incrementally test these hypotheses:

Aim 1: Development of a viable 3D microwave image reconstruction algo-

rithm.

Facilitated by the dual-mesh technique (refer to Section 3.3 for more details), this

goal will be accomplished in two steps (a) developing the 3D forward/2D reconstruc-

tion (3D/2D) technique (i.e. computing the forward field solution in 3D at each iteration

while assuming a 2D parameter discretization for the reconstruction task), (b) develop-

ing the 3D forward/3D reconstruction (3D/3D). The 3D/3D study will implement both

3D scalar (3Ds/3D) and 3D vector (3Dv/3D) forward field calculations in the recon-

structions. The effectiveness of these algorithms will be assessed for both simulation

and measured data.

To recover representative electrical property profiles from measurement data, match-

ing of the numerical model to the physical situation is one of the most important fac-

tors to ensure the correct interpretation of the data and convergence. Modeling of 3D

electromagnetic wave propagation in a complex medium is generally computationally

expensive even with modern computational resources. Using 2D methods to model

this inherently 3D phenomenon may save significant computational time; however, it

may impose excessive simplifications which can introduce image artifacts. A viable 3D

image reconstruction method will be developed which possesses the following charac-

teristics:

• computational feasibility and scalability between model accuracy and efficiency;

• compatibility with previously developed reconstruction techniques such as the

log-magnitude phase-form reconstruction [151], multi-spectrum technique, etc.

Utilizing the dual-mesh approach as a fundamental framework, we have devised

a strategy for developing a series of 2D and 3D algorithms in Chapter 3 through 5.
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This series includes (a) the 2D forward/2D algorithm (Chapter 3), (b) the 3D scalar

forward/2D algorithm (Chapter 4), (c) the 3D scalar forward/3D algorithm and (d) the

3D vector forward/3D algorithm (Chapter 5). The development of these approaches

provides a solid framework for exploring the validity of the first hypothesis. The as-

sessment of the relationship between model complexity and efficiency will be valuable

not only for microwave imaging but for other non-linear imaging methodologies.

Aim 2: Image reconstruction incorporating multiple frequency measurement

data to enhance image quality.

Hypotheses 2, 3 and 4 generally imply that increasing the amount of measurement

data could possibly reduce the ill-posedness of non-linear inverse problems when uti-

lizing approaches such as the Gauss-Newton iterative technique. However, for the mi-

crowave imaging situation, it is not always clear what is the optimal way to increase the

measurement data. For instance, simply increasing the number of antennas surrounding

the imaging target may not improve matters significantly because the new data may be

largely dependent on existing data depending on how electrically small the spacings be-

tween antennas are. Increasing the amount of data by utilizing measurements collected

over a range of frequencies may provide considerably more linearly independent data.

Again, caution should be used to utilize data for frequencies spaced far enough apart

that they increase the amount of new independent data.

In addition, complementary behavior when utilizing the low and high frequency

measurement data in the reconstruction process is consistently observed (the lower fre-

quency measurement data provides for more stable convergence behavior, but the final

images are quite smooth due to wavelength limitations; the higher frequency measure-

ment data provides for improved spatial resolution; however, the reconstructions in

these cases more readily converge to local minima). Consequently, we are developing a
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method that can exploit the positive aspects of both to enable stable image reconstruc-

tions while still retaining good spatial resolution.

The property dispersion relationships for the imaging target and background medium

must also be considered for field modelling at multiple frequencies. Finally, the impact

from multiple-frequency measurement and least-square convergence will be assessed

in this study. The efforts in developing such a multiple-frequency dispersion recon-

struction algorithm can be found in Chapter 6.

Aim 3: Singular value decomposition (SVD) will be exploited to construct ap-

propriate evaluation metrics that can be used to optimize important hardware

parameters such as operating frequency, antenna count, antenna distribution and

background contrast with respect to overall improvements in image quality.

An important goal in analyzing the measurement data independence and efficiency

is to provide strategic suggestions for improvements to the hardware system and asso-

ciated algorithms to provide the best image quality at reasonable cost.

The SVD of the imaging operator can provide detailed insight into the reconstruc-

tion process, and is intimately related to the image resolution limit, degree of ill-

posedness, noise level and other important factors in image reconstructions. This analy-

sis has been applied to the Radon transform (linear reconstruction) by Davison [40] and

Caponnetto and Bertero [26], and the inverse Born approximation by Brander and De-

Facio [19]. The analogous study we propose for non-linear diffraction imaging modal-

ities such as ours will be extremely useful in providing a theoretical basis for analyzing

image formation theory and evaluating the effectiveness of such systems.

In this study (Chapter 7), we will focus on simple tomographic 2D and 3D imaging

approaches for noiseless and noisy cases. We will investigate the possibility of deriving

the imaging operator SVD analytically. Where this is not feasible, we will compute
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the numerical SVD. Suitable metrics will be constructed to evaluate the efficiency of

different combinations of system parameters.

Aim 4: We will implement a number of general techniques for image quality

and computational efficiency improvements including:

• Time domain forward field solution to reduce computation time - especially

in the multi-frequency approach;

• Adjoint method for improving the computation efficiency of the Jacobian

matrix;

• Utilizing row/column weighting for improving numerical accuracy in solving

least-square problems;

• Understanding the behavior of the unwrapped phase for better implemen-

tation of the reconstruction algorithms utilizing the phase measurement.

In contrast with the first three fundamental aims, aim 4 is comprised of several de-

tailed but quite significant techniques which either provide support functions for the

preceding aims or serve as key components for future in-depth studies. For example,

the dual-mesh adjoint method (Section 3.3) provides a fundamental computational ef-

ficiency enhancement for all dual-mesh based algorithms in Aim 1. In addition, the

row/column weighting techniques (Section 6.2.3) provide the a mechanism for fine-

tuning the multiple-spectrum reconstructions. Chapter 8, 9 and 10 were devoted to

understanding the properties of the phase unwrapping integral and the influence of

the presence of phase singularities. This study not only has theoretical significance in

mathematics and topological electromagnetics, but also is important in explaining the

behavior of the previously developed algorithm in processing the microwave imaging

measurement data.





Chapter 2

Mathematical foundations for

microwave imaging

As discussed in the previous chapter, the image reconstruction in microwave imag-

ing has now been formulated as a mathematical problem, i.e. an ill-posed nonlinear

optimization problem. Moreover, it has also been pointed out that there are several dif-

ficulties associated with the solution process including nonlinearity, non-uniqueness,

noisy measurement data and ill-posedness. This chapter focuses on the mathematical

theories that address these difficulties. First, the general mathematical relationships

for the linearized solution in tomographic imaging are presented. These linearized ap-

proaches are extensively used in X-ray tomography and were exploited in the early

studies of microwave imaging. The philosophy of non-linear optimization and sev-

eral typical optimization methods are introduced with the emphasis on gradient-based

iterative algorithms. In studying the effects of measurement noise, we devote a sec-

tion to the statistical theory of parameter estimation where various estimators and their

statistical meanings are explored. Finally, we explore the issue of ill-posedness and

possible remedies especially in the linear case. The differences between the Tikhonov

39
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regularization and the Levenberg-Marquardt method have also been clarified to avoid

confusion.

2.1 Non-diffracting source tomography

We begin this chapter by considering the simplest tomographic imaging scenario: par-

allel beam X-ray CT [95, 31]. In this imaging method, X-ray beams are assumed to

travel along straight lines through the target since the X-ray photon energy is so high

that these beams are essentially undiffracted. Attenuation is the primary phenomenon

for the X-ray beam which is proportional to the linear attenuation coefficient µ(~r) of the

target. Therefore, the image reconstruction problem in X-ray CT amounts to recovering

µ(~r) from the attenuated X-ray beams.
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Figure 2.1: Illustration of the Fourier Slice Theorem

The mathematical principle behind the non-diffracting source tomography is re-

ferred as the “Fourier slice theorem” [95] which states: for a given 2D function µ(~r)

where ~r is a 2D vector, i.e. ~r ∈ R2, the projection of µ(~r) along the direction of vector θ̂

is denoted as

Pθ(t) =
∫

~r·t̂=t
µ(~r) · d~r (2.1)
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where t is the coordinate along t̂ which is the perpendicular direction to θ̂ (as shown

in Figure 2.1). The 2D Fourier transform of µ(~r) is denoted by M(~k) = F
(

µ(~r)) =
∫

µ(~r) exp
(

− j~k · ~r
)

d~r (note that F ( f ) is the Fourier transform of function f ). Then

Mθ(kt) = F (Pθ(t)) (2.2)

where Mθ(kt) is defined by

Mθ(kt) =
∫

~k·~t=kt

µ
(

~r) exp
(

− j~k · ~r
)

d~r (2.3)

Figure 2.1 illustrates the relationship between the the projection and the image of the

object in spectrum space. By taking measurements of the projected X-ray attenuations,

i.e., Pθ(t), at various angles, the image of M(~r) is filled in spectral space as the result of

performing the transforms in (2.1). Consequently, an inverse Fourier transform must be

applied to M(~r) to recover the original µ distribution from its spectral representation.

Considering the previous steps, the recovered image can be written as

µ(~r) = F −1
(

M(~k)
)

=
∫ π

0

(∫ ∞
−∞ Mθ(kt)dkt

)

dθ
=

∫ π

0

(∫ ∞
−∞F (Pθ(t)) dkt

)

dθ
(2.4)

Relationship (2.1) and (2.4) are referred as the Radon and inverse Radon trans-

forms [31], respectively. These transforms constitute the most fundamental relation-

ships for non-diffracting source projection imaging.

It is interesting to note that the integrations in the Radon transform pair represent

linear relationships between the function µ and the projection Pθ(t) in the functional

space, i.e., if we denote the transform on the right-hand-sides (RHS’s) of (2.1) and
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(2.4) as R and R−1, respectively, then the following relationships are satisfied

R
(

αµ(~r)
)

= αR
(

µ(~r)
)

R
(

µ1(~r) + µ2(~r)) = R
(

µ1(~r)) +R
(

µ2(~r))
(2.5)

where α is a scalar and µ1 ad µ2 are arbitrary property distributions. Similar results

can be obtained for the inverse Radon transform R−1. Thus, the discretization forms of

these equations lead to linear matrix equations. This linear relationship helps make the

X-ray CT so attractive because of the simplicity in determining the solutions.

2.2 Diffracting source tomography

In diffracting source tomography, the response at a single detector is not only related

to the properties along the straight line between the source and the detector, but to all

of the properties over the target space [95]. This section discusses a simplified case:

the far field measurement system, where both sources and receivers are electrically far

away from the object. Because of this assumption, the incident and scattered waves

can be treated as plane waves. Moreover, a weak scatterer assumption is also assumed

which implies that the total scattered field can be approximated by the unknown inci-

dent field as in Equation (1.9).The following derivation [31] is provided to demonstrate

the differences between the non-diffracting source and diffracting source imaging.

A diagram of such an imaging configuration is shown in Figure 2.2. An object is

placed near the origin O. A point source is placed at location ~rT and the detector is at

~rR. Based on the previous assumptions, |~rT | � |~r′| and |~rR| � |~r′| where ~r′ is located

inside the object. The scattered field at a far field point ~r from the object is represented
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Figure 2.2: Illustration for far-field diffracting source tomography

by equation (1.9) where the 2D Green’s function is expanded as

g(~r, ~r′) = j
4H(1)

0 (k0|~r − ~r′|) (2.6)

with H(1)
0 being the 0-th order Hankel function of the first kind. From the far field

assumption, g(~r, ~r′) is subsequently approximated by a plane wave as

g(~r, ~r′) ≈ j
4

√

2
jπk0r exp( jk0(rR − r̂ · ~r′)) (2.7)

by performing the asymptotic expansion of the Hankel function. In addition, the inci-

dent field at location ~r′ generated by the point source located at ~rT is also a 2D Green’s

function in the form of

φinc(~r′,~rT ) = j
4

H(1)
0 (k0|~r′ − ~rT |) (2.8)

Therefore, the plane wave approximation of φinc(~r′,~rT ) produces a result similar to that

in (2.7), i.e.

φinc(~r′,~rT ) ≈ j
4

√

2
jπk0r exp( jk0(r′ − r̂′ · ~rT )) (2.9)
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Combining (2.7) and (2.9) into (1.9), one can evaluate the scattered field at receiver ~rR

by

φsca(~rR) ≈ j
8π√rT rR

exp( jk0(rT + rR))M(~kR − ~kT ) (2.10)

where M(~k) is the Fourier transform of the scatterer µ(~r), ~kR = k0~rR and ~kT = k0~rT .

Equation (2.10) represents the relationship between the measurement and the image

in Fourier space. For a given source/receiver pair, the measurement φsca(~rR) is associ-

ated with a point in the spectrum space located at ~kR −~kT (denoted by point A in Figure

2.2). If the receiver is moved around the object while fixing the transmitter, the locus of

point A becomes a circle centered at −~kT with radius |~kT | = k0. If the movement of the

transmitter around the object is incorporated simultaneously, the set of circles sweep a

circular area in the spectrum space which has radius 2k0 (as shown in Figure 2.3).

kx

ky

Spectrum domain

2k0

Figure 2.3: Area swept by varying the directions of ~kR and ~kT

From plot 2.3, several conclusions can be drawn for linearly-approximated diffrac-

tion tomography. First, this imaging method is unable to distinguish features whose

spatial spectrum is greater than twice that of the incident wave number k0. This is to
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say, if the Fourier transform of two images have identical distributions inside the circle

r = 2k0 in F space but different outside the circle, the images reconstructed from their

projections will be identical. This implies non-unique solutions for a given measure-

ment data set in diffraction tomography. The spatial frequency 2k0 is referred as the

diffraction limit of the imaging system which is consistant with the sampling theorem

due to Shannon [148]. Secondly, as the frequency of the incident wave increases to-

ward infinity, i.e. k0 → ∞, the curvature of the circle approaches zero and the length

of the arc extends to infinity. The circle is therefore deformed into a straight line pass-

ing through the origin. In this situation, the diffraction relationship (2.10) becomes

the relationship in the Fourier slice theorem. This implies that non-diffracting source

tomography is a special case of diffracting source tomography at the high frequency

limit.

In the above derivations, the term “weak scatterer” was used. Once again, the con-

sequence of this assumption is the linear functional relationship between the measure-

ment and the image similar to that in the non-diffracting source case. Therefore, the

image can be efficiently reconstructed by solving linear equations. However, when the

scatterer has significant contrast to the background, the assumption is not valid and

the relationship between the object and measurement is no longer linear and nonlinear

methods need to be used to solve for the image.

Another assumption employed was the far field assumption. If the measurements

are acquired in the near field, the integration in (2.10) becomes far more complicated.

The detailed derivations can be found in [95].
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2.3 Nonlinear optimization

Linearity from a mathematical standpoint implies two things, additivity and homogene-

ity, i.e.
f (αx) = α f (x)
f (x + y) = f (x) + f (y)

(2.11)

The function f in (2.11) refers to an operator in a very general sense. The operant

x can be a number, a vector, a matrix, a function, or any other meaningful object.

Loosely speaking, linearity means that we can decompose a complex problem into

small subproblems which are relatively simple to solve and independent of each other.

Unfortunately, as we approach the more realistic nature of the world, more complex-

ities and nonlinearities are introduced. Understanding these nonlinearities is a great

challenge for the advancement of both modern science and technology. As a result,

nonlinear mathematics has undergone swift growth in recent decades. New disciplines

have been created including nonlinear dynamics, chaos, fractal theory, self-organization

theory, catastrophe theory and so on. Nonlinear physics and chemistry have also been

benefited from the boom of mathematical tools. The invention and development of

computers along with advanced numerical algorithms has dramatically increased in-

vestigations into nonlinear phenomena. The combination of numerical techniques and

nonlinear science inspired a large variety of methods for real-world applications among

which nonlinear optimization is one of the most important. Nontechnically speaking,

the problem of optimization is a search for the “most appropriate” solution among all

possibilities. The technical term referring to “appropriateness” is called the object func-

tion; the term for “all possibilities” is the feasible space [91, 164].



2.3. Nonlinear optimization 47

An optimization can be mathematically expressed in the following form [91]

min
x

f (x)
s.t. g1(x) = 0

g2(x) ≥ 0
(2.12)

where f is a scalar-valued function. The “s.t.” statement denotes the constraints or

conditions of the optimization which may not always appear in optimization problems.

Optimizations without the “s.t.” statement are referred to as non-constrained optimiza-

tions, while the remainder are constrained optimizations. The presence of a constraint

limits the boundaries of the feasible space within the parameter space. In other words,

it provides a priori information concerning possible solutions to the problem.

Optimization is a process of searching. Based on the manner of the search, opti-

mization methods are classified into direct and indirect methods. Direct methods enu-

merate the possible solutions and make comparisons of the corresponding object func-

tion values. Common direct methods include exhaustive search, the simplex method,

random method, the Fibonacci search and more [91]. These methods employ relatively

simple searching patterns which allow the evaluation of the object function in large

numbers. However, direct methods are only efficient when there are small number

of variables or in cases with countable inputs. For continuous problems with com-

plicated object functions, the implementation of these methods is unpractical. In the

last few decades, a much more powerful direct optimization method, the genetic al-

gorithm (GA), was proposed for searching the global optimum for complicated object

functions [84]. This algorithm exploits analogous concepts of “genetic mutations” and

“genetic inheritances” from biological systems. This strategy results in greatly im-

proved efficiency in the direct search process. GA has been successfully used in many

applications with microwave imaging being one of them [25].
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Indirect methods are most often referred to as gradient-based optimization tech-

niques [91, 164]. By taking advantage of the known analytical form of the object func-

tion, these methods approach the optimum solution in an iterative manner guided by the

analytical or numerical gradient information. Steepest decent (SD) method, Newton’s

method, Gauss-Newton (GN) method, Levenberg-Marquardt (LM) method, conjugate

gradient (CG) method and many of their variants belong to this category.

The steepest-descent method is possibly the most straightforward among all of the

indirect methods. At each iteration, the SD method seeks the negative gradient direction

of the object function and moves the current parameter estimate along that direction

attempting to reach the minimum. If we assume the object function is a multi-variable

function denoted by f and all its variables consist of a vector x, then at the i-th iteration,

the update equation of the SD method can be written as:

x(i+1) = x(i) − δ(i)
(

∇ f (x(i))
)

(2.13)

where ∇ f (x(i)) is the gradient vector of the object function at point x(i) defined by

∇ f (x(i)) =
{

d f
dxτ

}n

τ=1
(2.14)

where n is the length of vector x. The step size δ(i) is determined by a one-dimensional

search denoted by

δ(i) = arg min
δ

f (x(i) − δ
(

∇ f (x(i)))
)

(2.15)

The advantages of the SD method include 1) simplicity of implementation, and 2) ro-

bustness for poor initial estimates. However, the SD method suffers from several dis-

advantages including slow convergence, implicitness in determining the step size and
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oscillation during convergence.

The Newton’s method follows a similar path but involves the second order derivative

of the object function. At the i-th iteration, assuming the Taylor’s expansion of the

function f at x(i) is expressed as

f (x) = f (x(i)) + ∇ f (x(i))(x − x(i)) + H f (x(i))(x − x(i))2 + · · · (2.16)

where H f (x(i)) is referred as the Hessian matrix denoting the second order derivative

defined by

H f (x) =



























d f 2

d2x1

d f 2

dx1dx2
· · · d f 2

dx1dxn
d f 2

dx2dx1

d f 2

d2x2
· · · d f 2

dx2dxn
d f 2

dxndx1

d f 2

dxndx2
· · · d f 2

d2xn



























(2.17)

The minimization of f can be achieved by evaluating the stationary point from equation

(2.16) where
d f
dx = 0 (2.18)

Substituting (2.16) into (2.18) and truncating the Taylor series, the update equation for

the Newton’s method can finally be expressed as

x(i+1) = x(i) −
(

H f (x(i))
)−1
∇ f (x(i)) (2.19)

Newton’s method converges faster than the steepest-decent method because of the

contribution from the higher order information. However, the price paid is the reduction

in robustness, i.e. it is more sensitive to poor initial estimates than the steepest-decent

method. An additional drawback is the requirement for computing the Hessian matrix

H which can be a significant issue in some applications where the analytical form of

the object function is not available or has a complicated form.
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For a specific subset of optimization problems, a useful approach is the least-square

problems:

min
x

f (x) = ||g(x)||2 = gT (x)g(x) (2.20)

where g = {gi(x)}mi=1 is a vector of the scalar functions of x. The Gauss-Newton (GN)

method is the most frequently used. In this case, the Newton’s method is modified

by replacing the Hessian matrix, H f (x(i)) in (2.19), by multiplication of two first order

derivatives (the Jacobian matrix) of function g defined by

Jg(x) =



























dg1
dx1

dg1
dx2

· · · dg1
dxn

dg2
dx1

dg2
dx2

· · · dg2
dxn

dgm
dx1

dgm
dx2
· · · dgm

dxn



























(2.21)

In this case, the “Gauss-Hessian” matrix G has form G =
(

Jg(x(i))T Jg(x(i))
)

. The update

equation can now be written as

x(i+1) = x(i) −
(

Jg(x(i))T Jg(x(i))
)−1

Jg(x(i))T g(x(i)) (2.22)

or
(

Jg(x(i))T Jg(x(i))
)

(∆x)(i) = −Jg(x(i))T g(x(i)) (2.23)

where ∆x(i) = x(i+1) − x(i). Equation (2.23) is referred as the normal equation [67]. In

the GN method, one only needs to compute Jg(x(i)) instead of H f which provides a

significant computation time saving.

Notice that the inversion of the Gauss-Hessian matrix in (2.22) requires that 1) the

Jacobian matrix J ∈ Cm×n is a “skinny” matrix, i.e. the number of unknowns, n, is

fewer than the number of constraints, m, and 2) the Jacobian matrix is full-ranked,

i.e. rank(J) = n. In this case, the set of least-square problem (2.20) is referred as
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over-determined. If the Jacobian matrix is a full-ranked “fat” matrix, i.e. m < n and

rank(J) = m, then, (2.22) and (2.23) are not valid. In this case, the update equation

should be written as

x(i+1) = x(i) − Jg(x(i))
(

Jg(x(i))Jg(x(i))T
)−1 g(x(i)) (2.24)

Equation (2.24) is referred as the Gauss-Newton update equation for under-determined

least square problems.

Both the Newton’s method and the Gauss-Newton’s method exhibit oscillatory fea-

tures during their convergence and are both sensitive to the quality of their initial

estimates. Levenberg [108] and Marquardt [121] proposed a hybrid technique, the

Levenberg-Marquardt (LM) method. They introduced a steering factor λ to switch be-

tween the GN direction and SD direction. The update equation in LM is written as

(

Jg(x(i))T Jg(x(i)) + λI
)

(∆x)(i) = −Jg(x(i))T g(x) (2.25)

When λ → 0, equation (2.25) reduces to (2.23) and the LM method becomes the GN

method. When λ → ∞, the JT J term is omitted and the RHS provides the steepest-

decent direction of the object function f . The value of λ for each iteration is chosen

in the following manner: λ is initialized with a large value. Thus, during the first

few iterations, the LM method exhibits the robustness of the SD method so that the

initial guess for x can be chosen with less caution. After each iteration, if the object

function decreases, i.e. f (x(i+1)) < f (x(i)), λ is reduced by a given ratio (for example

λ(i+1) = λ(i)/2) to accelerate the convergence. If the object function rises, λ is increased.
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2.4 Ill-posedness and regularization

As we have explained in Section 1.3, the inverse problem from a system point of view

is to estimate the unknown system parameter from a known input and output. However,

a large number of inverse problems exhibit inherent difficulties and the direct evalua-

tion of these problems often produces meaningless solutions. Quite often, one of the

following results can occur in the evaluation of the goal of the inverse problem: 1) the

solution does not exist, 2) the solution is not unique, or 3) solving for the solution is not

stable, i.e. a tiny perturbation in the input results in large differences in the solution.

If any of the above results occurs, the inverse problem is said to be ill-posed (in the

Hadamard sense) [71, 138]. A more thorough and strict description of ill-posedness

can be found in the monograph by Lavrent’et [104].

2.4.1 Linear ill-posed problems

Even linear problems can be ill-posed. A linear ill-posed problem is characterized by

the matrix equation

Ax = b (2.26)

where the evaluation of the solution x is sensitive to the noise in b. The sensitivity

is characterized by the singular value decomposition (SVD) of the A matrix. For an

arbitrary complex valued matrix A ∈ Cm×n, the SVD of A is given by

A = UΣVT (2.27)

where U = {u1, u2, · · · , un} ∈ Cm×n and V = {v1, v2, · · · , vn} ∈ Cn×n are both column

orthogonal matrices, i.e. UHU = VHV = I. Σ is a diagonal matrix with non-negative
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values arranged in non-increasing order, i.e. Σ = diag
(

{σi}ni=1

)

with σ1 ≥ σ2 ≥ · · · ≥

σn ≥ 0. Vectors ui and vi are referred as the i-th left and right singular vectors, respec-

tively, while σi is the i-th singular value. The sequence {σ1, σ2, · · · , σn} is referred as

the singular spectrum of matrix A.

Similar to the eigenvalue decomposition for square matrices, the SVD of an arbi-

trary matrix reveals detailed structure of the corresponding linear transform [67, 77].

With the help of the SVD, a matrix can be expanded into the summation of a number

of matrices

A =
n

∑

i=1
σiAi (2.28)

where Ai = uivT
i . As a result, a linear transformation is equivalent to a sequence of

linear transformations with a decreasing magnitude in contribution (notice that coeffi-

cients σi are non-increasing in (2.28)). The solution to (2.26) is then written as

x =
n

∑

i=1

uT
i b
σi

vi (2.29)

Relationship (2.29) is referred as the singular value expansion (SVE) of the solution

from which multiple results can be observed. First, the solution is now a summation

of n components instead of simply A−1b or A+b (A+ denotes the pseudo-inversion of

A matrix). Secondly, for each component of the series, the singular value σi is in the

denominator which means a very small value in σi can potentially have a large impact

on the solution. Thirdly, since each term, uT
i b
σi

is a scalar coefficient which leaves the

solution x as essentially a linear combination of vi’s. If x represents an image, then the

right singular vectors vi (i = 1, · · · , n) are the orthogonal bases comprising the image.

The spectrum {σi} provides a natural measurement for the sensitivity of the solution

x with respect to the input b given the SVE form (2.29) of the solution. Based on



54 Chapter 2. Mathematical foundations for microwave imaging

the shape of the spectrum {σi}, matrix equations (2.26) can be classified into one of

the following categories: a full-rank and well-posed matrix equation, an exact rank-

deficient matrix equation or an (discretized) ill-posed matrix equation. The typical

singular spectra for these problems are plotted in Figure 2.4 [77]. From the figure, we

can see an ill-posed problem is characterized by gradually vanishing spectrum which

indicates the constrained equations have increasing amounts of redundancy. An ill-

Figure 2.4: Classification of the linear equations based on the distributions of the sin-
gular spectra.

posed problem must be converted into a well-posed problem in order to be solved. The

technique for this conversion is called “regularization”. For a linear ill-posed problem,

the following methods are among the most commonly used: 1) the truncated SVD

(TSVD), 2) Tikhonov regularization and 3) the truncated total least square (TTLS). A

short description of each method is provided below.

As can be observed from equation (2.29), complications arise from the terms with

small singular values at the end of the series. Therefore, the most straightforward way

is to eliminate these components directly from the summation by setting a truncation

level. Let 0 ≤ k ≤ n be the number of terms one wants to include in the summation, the
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solution

xk =

k
∑

i=1

uT
i b
σi

vi (2.30)

is referred as the TSVD solution to the problem (2.26).

Very often, equation (2.30) is rewritten in the following form

xk =

n
∑

i=1
f (σi)

uT
i b
σi

vi (2.31)

where f is called a filtering function. For the TSVD, the filtering function is simply an

ideal low-pass filter characterized by

f (σi) =














1 i ≤ k
0 i > k

(2.32)

(the assumption is that the large singular values correspond to the low-frequency com-

ponents in the solution as shall be illustrated in Chapter 7).

To solve a linear ill-posed problem using the TSVD, the SVD of the LHS ma-

trix A must be computed. This is not realistic when A is very large since the most

efficient algorithm for computing the SVD of a general matrix has computational com-

plexity O(N3) [67, 12]. Tikhonov proposed an alternative algorithm to mitigate the ill-

posedness without performing the SVD of A, called the Tikhonov regularization [191].

The solution to (2.26) with Tikhonov regularization is characterized by solving the fol-

lowing optimization problem:

min
x
||Ax − b||22 + λ||L(x − x∗)||22 (2.33)

This object function is similar to the regularized form in functional space as demon-

strated in (1.13), where the smoothing norm is achieved by utilizing the positive def-
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inite matrix L and a priori solution x∗. λ is a scalar referred to as the regularization

parameter. The evaluation of the minimization problem (2.33) can be performed by

taking the derivative of the object function and setting it equal to zero yielding

AH (Ax − b) + λLHL (x − x∗) = 0 (2.34)

and consequently

(AHA + λLHL)x = AHb + λLHx∗ (2.35)

If no prior information is available, x∗ is typically set to zero. Matrix L can be any

arbitrary positive definite matrix. If the statistical properties of the estimated parameter

are available, setting LT L to the inverse of the covariance matrix of random variable

x can provide a good estimator (refer to Section 2.5 for more details). Otherwise, the

L matrix is often chosen to be the identity matrix I which statistically implies that the

parameters under estimation have constant variances and are independent of each other.

In this case, (2.35) becomes

(AHA + λI)x = AHb (2.36)

Equation (2.36) is called the standard form of the Tikhonov regularization, which has

been shown to be equivalent to the solution in the form of (2.31) with the filtering

function defined by [77]

f (σi) =
σ2

i

σ2
i + λ

(2.37)

Application of this filter clearly avoids the sensitivity problem caused by small singu-

lar values (noting that when σi → 0, f (σi) → 0) while preserving the information

corresponding to the large singular values (when σi � λ, f (σi) → 1). Moreover,

the computational complexity for solving equation (2.36) is only on the order of O(N2)
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which provides a significant time saving for problems with large numbers of unknowns.

Notice that when the linear problem is ill-posed, the rank of the matrix A is charac-

terized by its “effective numerical rank”, re f f , as defined in [77]. In many cases, re f f is

smaller than both the number of unknowns and measurements. Therefore, the matrices

AHA and AAH are both “numerically” rank deficient. However, the matrices AHA + λI

and AAH +λ′I could both have full-rank for appropriate values of λ and λ′. In this case,

the solution can be computed by either

x = (AHA + λI)−1AHb (2.38)

or

x = AH(AAH + λ′I)−1b (2.39)

and the results have only nominal difference. Considering the computational efficiency,

when A is a “skinny” matrix, i.e. the number of rows is greater than that of the columns,

the solution computed by (2.38) will be significantly faster than by (2.39); alternatively,

when A is a “fat” matrix, (2.39) is faster than (2.38) (In the reconstruction algorithms

presented in the second part of the thesis, we always choose the faster scheme by look-

ing at the dimension of the matrix ahead of the solution).

A third method for regularizing linear ill-posed problems is the truncated total least

square (TTLS) method. The concept of the total least-square (TLS) was developed by

Golub and Van Loan in 1980 [66, 67]. The TLS method can produce a robust solution

when the A matrix and b are both contaminated with noise whereas traditional methods

only consider the noise in b. The evaluation of the TTLS solution for (2.26) requires
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computation of the SVD of the extended matrix Ā defined by

Ā = [A, b] (2.40)

essentially appending column vector b to A. Matrix Ā has dimension m× (n+1). Given

the SVD of Ā = UΣVT , the solution to (2.26) can be expressed as

xTT LS = −V12 · VT
22||V22||−2

2 (2.41)

where V12 and V22 are the sub-matrices of V defined by

V =














V11 V12

V21 V22















(2.42)

Despite the robustness of this method, the evaluation of the solution can be very slow

when A is a large matrix due to the computation time in evaluating the SVD.

Notice that all three of these methods require the determination of a regularization

parameter, either λ or k. The study of optimal regularization parameters is an active area

of study in ill-posed problems. Thus far, there are several of methods widely used for

this purpose. These include: the discrepancy principle due to Morozov [137, 192], the

L-curve method proposed by Hansen [105, 77], the GCV method proposed by Wahba

[199] and the quasi-optimal criteria proposed by Hanke and Raus [75]. Detailed studies

and comparisons of these criteria can be found in [77] and [197].

2.4.2 Nonlinear ill-posed problems

When the relationship between the unknown and the output is a nonlinear equation,

ill-posedness can also be present by exhibiting one of the symptoms described at the
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beginning of this section. In these situations, the regularization methods in the previous

subsection cannot be applied directly. Here we shall demonstrate the regularization for

ill-posed nonlinear problems using the Tikhonov regularization as an example.

Similar to (2.33), the object function in the non-linear cases can be written as

min
x
||f(x) − b||22 + λ||L(x − x∗)||22 (2.43)

where function f(x) is a vector of nonlinear functions in x, i.e. f(x) = { f1(x, f2(x), · · · , fm(x))}.

Applying Taylor’s expansion to f(x) at a given value of the parameter x0, f can be writ-

ten as

f(x) = f(x0) + df
dx

∣

∣

∣

∣

∣x=x0

(x − x0) + · · · (2.44)

By truncating the series after the second order term, a linear relationship with respect

to x is obtained. Denoting df
dx

∣

∣

∣x=x0
as J and substituting the truncated series into (2.43)

produces

min
x
||f(x0) + J(x − x0) − b||22 + λ||L(x − x∗)||22 (2.45)

Taking the derivative to the object function in (2.45) and setting it to zero yields

JT (f(x0) − b + J (x − x0)) + λLHL (x − x∗) = 0 (2.46)

which is expanded to produce

(JT J + λLHL)x = JT (f(b − x0)) + JT Jx0 + LHLx∗ (2.47)

By setting L = I and x∗ = 0 for the standard form, we get

(JT J + λI)∆x = JT∆f (2.48)
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where ∆x = x − x0 and ∆f = b − f(x0).

Although (2.48) is similar to (2.36), the unknown solved for in the former is ∆x

while x is solved for in the latter, which is an important distinction.

2.4.3 Differences between the Levenberg-Marquardt method and

nonlinear Tikhonov regularization

Another similarity can be observed between (2.36)/(2.48) and the Levenberg-Marquardt

update equation (2.25). Although these two concepts share the very similar underlying

methodologies, i.e. dynamically adjusting the radius of the trust region to improve the

robustness of the solution [91], the differences between these two concepts should be

clarified to avoid future confusions.

First, although both methods can be viewed as optimization processes, the criteria

in the optimizations are different. The LM method is essentially an improved Gauss-

Newton method which minimizes the traditional sum-of-square object function. How-

ever, in ill-posed problems, the direct optimization of the sum-of-square function is im-

possible which requires one to modify the object function by adding the regularization

term. In this case, the Tikhonov regularization differs from the LM method by having

a modified object function. Secondly, they have different purposes. The LM method

is intended to conqueror the nonlinearity in a root finding problem or a minimization

problem. Tikhonov regularization, on the other hand, is a method which is targeted

at relieving the ill-posedness, which may occur in both linear and nonlinear problems.

Thirdly, the criteria for selecting and manipulating the parameter λ are different. In

the LM method, the value of λ is selected to reduce the oscillations during the conver-

gence. At the beginning of the convergence, λ can be chosen to be arbitrarily large,

and is reduced towards zero at each iteration for a well-behaved process. However,
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the parameter in the Tikhonov regularization can not be chosen arbitrarily. Generally

speaking, the regularization parameter λ can be optimally determined by the L-curve

method, generalized cross-validation (GCV) method or others listed in the previous

subsection.

2.5 Nonlinear parameter estimation

Before continuing to the statistical aspects of this problem, a broad summary of the pre-

vious sections is presented here. In order to reconstruct the spatial distribution (or im-

age) of the unknown properties, one needs to solve an ill-posed nonlinear optimization

problem which is best addressed using iterative gradient-based approaches. The object

function contains both the measurement and the computed fields from the nonlinear

forward model. Beginning with an initial property estimate, the forward model needs

to be evaluated to produce the “predicted” measurement. An update of the property

is then computed from the difference between the predicted and actual measurements

utilizing the gradient information of the forward model. This process is repeated until

the satisfactory match is found between the predicted and actual measurements.

It is interesting to note that the reconstruction problem solution described above

only requires a deterministic forward model and some measurement data. However,

this is simplistic in that both the model or measurements could be uncertain and is

actually the case for most real-world imaging systems. The measurement readings

from instruments are usually contaminated by noise; the property to be imaged is also

subject to random fluctuations due to environmental changes. To accommodate these

variations, we need to apply the statistical theory of parameter estimation.

The following quotation in the foreword of “Computational Methods for Inverse
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Problems” by Vogel (foreword by H. T. Banks) [197] illustrated some historical rela-

tionships between deterministic and stochastic approaches in the parameter estimation:

“It is not surprising that there is a large mathematical literature on inverse

problem methods. What might be surprising is that this literature is signifi-

cantly divided along deterministic/nondeterministic lines. Methods abound

in the statistics literature, where generally the models are assumed quite

simple (and often even analytically known!) and the emphasis is on treating

statistical aspects of fitting models to data. On the other hand, the applied

mathematical literature has a plethora of increasing complex parameter-

ized models (nonlinear ordinary differential equations, partial differential

equations, and delay equations) which are treated theoretically and compu-

tationally in a deterministic framework with little or no attention to inherent

uncertainty in either the modelled mechanisms or the data used to validate

the model.”

Given the randomness in the measurements, the best parameter values estimated

from the deterministic framework may vary when supplied with different data sets. One

important task for parameter estimation is to provide a “fair” estimate for all possible

measurements [7].

The selection of the “best” estimate once again becomes an optimization problem.

To reformulate this problem in the statistical sense, let’s assume that the possible mea-

surements at the receivers are a vector of m random variables and is denoted by η; the

parameter is is represented by another variable vector of length p denoted by β; and the

relationship (or model) between these two variables can be expressed by a nonlinear

function

g(η,β, τ) = 0 (2.49)
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where g represents a group of relationships that connect η and β, and symbol τ denotes

the non-stochastic parameters or constants. In many cases, η can be expressed explicitly

as

η = f (β) (2.50)

where both f ( and g( are referred to as models. In this case, the model is assumed to

be a nonlinear deterministic relationship to avoid the more complex case where it is

uncertain. Taylor expansion of f (β) provides similar results to that in the deterministic

problem (2.16) as

f (β) = f (β0) + (∇ f (β0))T (β − β0) + · · · (2.51)

The task of this parameter estimation problem is to find an estimator β̂ to the true value

of the parameter β which minimizes a sum-of-square function [7]

S = (Y − f (β))T W(Y − f (β)) + (µ − β)T U(µ − β) (2.52)

where Y is the actual measurement vector (a sample or realization of random variable

η), W and U are symmetric weighting matrices and µ is the a priori estimation of the

parameter.

The minimization of the sum-of-square object function S involves the non-linear

optimization techniques discussed in Section 2.3. The Gauss-Newton method is se-

lected for its efficiency in solving least-square problems. Following the derivations

from (2.20) to (2.23), the update equation of the nonlinear estimation problem can be

written as

b(i+1) = b(i) +
(

JT WJ + U
)−1 (

JT W
(

Y − f (b(i))
)

+ U(µ − b(i))
)

(2.53)
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where J = ∇ f (β0). When iteration i→ ∞, vector b(i) becomes the estimator β̂.

Depending on the knowledge of the randomness in the measurement Y and param-

eter β, multiple cases can be considered [7, 202]:

case 1: if there is no assumption concerning the statistical properties of the measure-

ments and the parameters, the most reliable approach is to use the ordinary least-square

(OLS) estimator β̂OLS , which can be computed by letting W = I,U = 0 and µ = 0 in

(2.53). The resulting update equation is (assuming J has full rank and overdetermined)

b(i+1) = b(i) + (JT J)−1(JT (Y − f (b(i)))) (2.54)

which is identical to the update equation previously derived in the deterministic case

(equation (2.22)).

The computation of β̂OLS dose not involve any statistical properties of the measure-

ment and parameter. However, the appropriateness of this estimator does depend on

these properties. If the measurement noise can be characterized as: 1) additive noise,

i.e. Y = f(β)+ε, 2) the noise has zero mean, i.e. E(ε) = 0 where E(ε) is the expectation

of ε, 3) parameter β is nonstochastic, and 4) there is no a priori information about β,

then β̂OLS is an unbiased estimator to the true parameter β, i.e. E(β̂OLS ) = β. If the fol-

lowing conditions are also met: 5) the noise is independent, i.e. the covariance matrix

cov(β) is a diagonal matrix and 6) the noise ε has constant variance, i.e. V(Yi|β) = σ2I,

then β̂OLS becomes a minimum variance estimator (MVE) whose variance approaches

the Cramer-Rao bound based on the Gauss-Markov Theorem [7, 3, 202]. Otherwise,

the OLS estimator to the parameter may not be the optimal choice.

case 2: if it is known that the measurement noise satisfies assumptions 1-5 in case

1 plus 7) the covariance matrix of the noise is known as Ω = cov(ε), then by letting

W = Ω−1, U = 0 and µ = 0, the iterative update scheme in (2.53) leads to the weighted
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least square (WLS) estimator, β̂WLS . Under these assumptions, β̂WLS is an MVE to the

true parameter.

case 3: in addition to all assumptions in case 2, if 8) the noise is characterized

by a normal distribution, then the WLS estimator in case 2 becomes identical to the

maximum likelihood (ML) estimator β̂ML.

case 4: if the noise satisfies all conditions in case 3 except that a priori information

is available, and β is a random variable with mean µβ and covarianceΩβ, then by letting

W = Ω−1, µ = µβ, U = Ω−1
β , equation (2.53) produces the maximum a posteriori (MAP)

estimator to the parameter β.

Note that among all four estimators, only the OLS estimator does not require any

statistical assumption in order to compute the solution. This can be both good and bad.

The benefits primarily relate to the simplicity of the computations. The drawbacks in-

clude the fact that the accuracy of the estimation depends completely on how many of

the assumptions are met in the real applications. The more general approach for de-

riving the update equation given the statistical characteristics of the measurements and

parameters is to construct the likelihood function or a posteriori probability function

based on the analytical form of the forward model. For this approach, the measurement

noise must be characterized including its mean, variance and distribution. In Appendix

B, we illustrate an example of characterizing the statistical properties of the measure-

ment noise from the microwave imaging system developed at Dartmouth College to

justify the reconstruction algorithms selected in the remainder of the thesis.
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2.6 Summary

In the first two chapters, the conceptual introduction for the key ingredients of building

microwave imaging systems and algorithms were compiled and a road map for develop-

ing efficient reconstruction algorithms was outlined. The physical nature of microwave

imaging was investigated by discussing the general framework of medical imaging

modalities including a literature review profiling the evolution of this technology. In

the second chapter, we discussed various mathematical tools to rigorously formulate

the image reconstruction problems. These tools include nonlinear optimization, param-

eter estimation theory, the inverse problem and the regularization for ill-posedness.

From these discussions, a couple of preliminary conclusions can be drawn:

1. microwave imaging is a wave-based active dielectric property imaging method.

Note that in this thesis, microwave imaging is synonymously used with mi-

crowave near-field tomographic imaging,

2. the exploration of nonlinear physical phenomena is a great challenge for modern

imaging techniques and provides new opportunities for high contrast functional

imaging,

3. the dielectric properties and measured field qualities are related by a nonlinear

model - Maxwell’s equations,

4. the iterative image reconstruction process requires the evaluation of the scattered

field for the known structure, i.e. the forward problem, as well as the evaluation

of the parameter update, i.e. the inverse problem, during each iteration.
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Image reconstruction algorithms
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Chapter 3

Dual-mesh based 2D reconstruction

algorithms

The primary focus of this part of the thesis are the image reconstruction algorithms

themselves and the details of their implementations. The algorithms here are specif-

ically those developed for the near-field tomographic imaging systems at Dartmouth

College. Compared to other existing microwave imaging algorithms, these methods

feature utilizing nonlinear methods in both forward field modellings and parameter re-

constructions.

3.1 Introduction

In this chapter, we discuss the general framework of the nonlinear image reconstruction

and associated 2D forward solution algorithms. The concept of the dual-mesh is intro-

duced as an organizing theme for the algorithms sequentially presented in this part of

the thesis. The previous efforts and new developments in 2D image reconstruction will

be discussed including the 2D scalar forward field reconstruction algorithm utilizing

69
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the finite element method coupled with boundary element method and the 2D forward

solution using the FDTD method. A number of important issues are investigated in-

cluding the coupling between FE and BE methods, the absorbing boundary condition,

excitation implementations, stability condition and numerical dispersions in the FDTD

method as well as a computational efficiency comparison between 2D FE-based and

FDTD methods.

3.2 Regularized Gauss-Newton iterative reconstruction

As we discussed in the first part of the thesis, especially in Chapter 2, the nonlinear and

ill-posed nature of our problem are non-negligible issues and must be considered in the

development of these algorithms. The high-contrast of the object to the background for

the breast imaging problem, one of the supposed advantages of microwave imaging,

renders the linearized algorithms, as discussed in Section 2.1 and 2.2, less favorable

due to their “weak scatterer” assumptions. Iterative algorithms are more appropriate in

this scenario among which the Gauss-Newton based iterative update scheme (equation

(2.53) in Section 2.5) is quite promising due to its generality. In this section, we will

discuss each term in the update equation by considering the actual application and also

investigate the validity of the associated statistical assumptions.

3.2.1 Forward equations

The measurement data from our data acquisition system are the electric fields. The

parameters to be estimated are the dielectric properties, i.e. permittivity, ε, and con-

ductivity, σ. The field values and properties are related by the curl relationships in
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Maxwell’s equations [100, 80, 87], i.e.

∇ × ~E(~r, t) = − ∂~B(~r,t)
∂t − ~M(~r, t)

∇ × ~H(~r, t) = ∂~D(~r,t)
∂t +

~Ji(~r, t) + ~J(~r, t)
(3.1)

where ~E, ~H, ~D, ~B, ~Ji, ~J and ~M are the electric field (V/m), magnetic field (A/m), electric

flux (C/m2), magnetic flux (Wb/m2), induced current density (A/m2), source current

density (A/m2) and magnetic current density (Wb/(sm2)), respectively. The constitutive

relationships are given by

~D(~r, t) = ¯̄ε(~r, t)~E(~r, t)
~B(~r, t) = ¯̄µ(~r, t) ~H(~r, t)
~Ji(~r, t) = ¯̄σ(~r, t)~E(~r, t)
~M(~r, t) = ¯̄σ∗(~r, t) ~H(~r, t)

(3.2)

where ¯̄ε(~r, t), ¯̄µ(~r, t), ¯̄σ(~r, t) and ¯̄σ∗(~r, t) are the permittivity, permeability, conductivity

and magnetic conductivity tensors, respectively. The magnetic current density is a ficti-

tious term introduced for mathematical symmetry in the equations. We will neglect this

term in all the subsequent derivations except in Section 3.6 and 5.1.3 where the field in

an artificial medium is analyzed. Because our targets are biological tissues which are

generally 1) isotropic, i.e. the dielectric tensors become scalars, 2) nonmagnetic, i.e.

µ(~r, t) = µ0 where µ0 is the free space permeability, 3) electrically lossy, i.e. σ(~r, t) , 0,

and 4) stationary, i.e. the dielectric properties are not functions of time, equation (3.1)

can be subsequently expressed as

∇ × ~E(~r, t) = −µ0
∂ ~H(~r,t)
∂t

∇ × ~H(~r, t) = ε(~r) ∂~E(~r,t)
∂t + σ(~r)~E(~r, t) + ~J(~r, t)

(3.3)

Assuming the field is time-harmonic, i.e. waves at a single frequency, the complex

notation can be introduced to simplify the mathematical derivations. The electric field
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component Eξ (ξ = x, y, z) can be rewritten as

Eξ(~r, t) = |Eξ0(~r)| cos(ωt + φξ0)
= <e(|Eξ0(~r)|e jφξ0e jωt)

(3.4)

where the complex number |Eξ0(~r)|e jφξ0 is denoted as Eξ(~r) which is called the phasor.

Similar conversions can be carried for all field vectors in (3.3). Inserting the phasor

representations back to 3.3 for all field vectors, and cancelling the time dependence e jωt

on both sides of the equation, we obtain a relationship of the complex-valued phasors

as
∇ × ~E(~r) = − jωµ0 ~H(~r)
∇ × ~H(~r) = jω

(

ε(~r) − jσ(~r)
ω

)

~E(~r) + ~J(~r)
(3.5)

Equation (3.5) is referred as the frequency domain representation of (3.3). Solving for

~H(~r) from the first equation in (3.5) and substituting into the second equation, we get

∇ × ∇ × ~E(~r) − ω2µ0

(

ε(~r) − jσ(~r)
ω

)

~E(~r) = − jωµ0 ~J(~r) (3.6)

Applying the vector identity

∇ × ∇ × ~U = ∇∇ · ~U − ∇2 ~U (3.7)

and defining the squared complex wave number as

k2(~r) = ω2µ0

(

ε(~r) − jσ(~r)
ω

)

(3.8)

(3.6) can be rewritten as

∇∇ · ~E(~r) − ∇2 ~E(~r) − k2(~r)~E(~r) = − jωµ0 ~J(~r) (3.9)
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From Gauss’s law

∇ · ~D(~r) = 0 (3.10)

which can be expanded to give

∇ · ~E(~r) = − 1
ε(~r)
~E(~r) · ∇ε(~r) (3.11)

together with the charge conservation law [100]:

∇ × ~J(~r) = −∂ρ
∂t = 0 (3.12)

are used to produce

∇2 ~E(~r) + k2(~r)~E(~r) + ∇












~E(~r) · ∇k2(~r)
k2(~r)













= jωµ0 ~J(~r) (3.13)

Equation (3.13) or (3.6) is the vector-form wave equation [100, 31] in the 3D space

which defines the relationship between the frequency-domain electric field and the di-

electrics (embodied in k2(~r)). In another word, equation (3.13) and (3.6) are the forward

model in microwave imaging. k2(~r) stores the unknown permittivity and conductivity

distributions in its real and imaginary parts, respectively. Once k2(~r) has been recon-

structed, the permittivity and conductivity distributions can be obtained simultaneously.

It is important to recognize that the relationship between the measurements in ~E(~r) and

unknowns, k2(~r), is a nonlinear relationship.

In practice, the measurements can not be a continuous function, and neither can the

solution of the dielectric property distribution. To evaluate the forward field from (3.13)

and reconstruct k2, both ~E(~r) and k2(~r) must be discretized. This can be achieved by

implementing the computational algorithm discussed in Section 3.2.2. These numerical
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methods typically yield a solution in a matrix equation representation in the form of

A(k2)E = b (3.14)

where E = { ~E(~r1), ~E(~r2), · · · , ~E(~rN)} is the discretized field vector over spatial points

{~ri}Ni=1, A(k2) is an N × N matrix and k2 = {k2(~p1), k2(~p2), · · · , k2(~pP)} denotes the com-

plex dielectric parameters over point set {~pi}Pi=1. It should be mentioned that even though

(3.14) is a matrix equation, the relationship between vectors E and k2 is still nonlinear

since E can be conceptually expressed as

E = A−1(k2)b (3.15)

3.2.2 Computational methods for evaluating forward problems

Computational electromagnetics (CEM) has evolved into a fast gowning discipline

which incorporates the emerging computational methodologies into the study of elec-

tromagnetism. Many of the methods in CEM are particularly designed for modelling

the EM phenomena due to the distinctive structure of the governing mathematical

model. With large computer clusters or vector machines, modern CEM methods can

solve problems with huge number of unknowns with good accuracy and within accept-

able times. A summary of the most popular computational methods is illustrated in a

tree structure in Appendix F.

For evaluating the EM fields requires solving the full Maxwell’s equations. How-

ever, when the EM wave wavelength is much smaller than the dimension of the structure

with which it interacts, high-frequency approximations can be applied to simplify the

computation. As a result, the classical ray-optics, beam optics or the particle model
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of photons become the more efficient solutions to the problem. A number of meth-

ods were developed for high-frequency EM field approximations. These methods in-

clude geometric optics (GO), physical optics (PO) [179], geometric theory of diffrac-

tion (GTD) [98, 78], physical theory of diffraction (PTD) [195], uniform geometric

theory of diffraction (UTD) [198], shooting-and-bouncing ray (SBR) [113], complex

ray (CR) along with other techniques. These high-frequency methods were applied

primarily for solving the electrically-large object scattering problems.

For cases where the previous small wavelength assumption is not valid, one can not

treat the EM wave as an optical ray. Maxwell’s equations must be solved directly. With

discretization and linearization, these relationships can be converted from continuous

representations into matrix equations. Based on differences in the continuous model,

we can divide these methods into two major categories: the integration and differentia-

tion based methods.

Gauss’s theorem, Stoke’s theorem and, more importantly, the Green’s identities

relate the differential operators with appropriate boundaries integrations. Many useful

relationships can be derived from the combinations of these identities. For example, the

Helen formula, the Stratton-Chu formula, the electric field integral equation (EFIE),

magnetic field integral equation (MFIE) and complex field integral equation (CFIE)

are all among the most frequently used integral relationships for evaluating the field

scattering problems [87].

These surface integral equations can be further discretized into matrix forms under

various approaches. The variational principle is one of them [92, 185]. The implemen-

tation of this principle results in an efficient integral based computational method, the

method of moment (MoM), which was first developed by Harrington [81] and is still ex-

tensively used in many applications. The fast multipole method (FMM) and multi-level
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fast multipole algorithm (MLFMA) are relatively new developments in the integration

based algorithms, which were first studied by Rokhlin and Greengard [170, 69] and

Lu, Song and Chew [117, 183, 184] respectively. Using a binary tree hierarchy struc-

ture, these algorithms provide significant improvement in speed and efficiency in mod-

elling large structure scattering problems. The computational complexities for these

two methods for 3D scattering problems are O(N2) and O(N log N), respectively.

The benefits of using integration based methods include:

1. The reduction in the problem dimension: for surface integral equations, the un-

knowns are only located on the boundaries, i.e. for the 3D scattering problem,

only 2D surface integrations are needed; for 2D scattering problem, only line

integrations are required. Thus, the problem size is dramatically reduced;

2. no special processing is needed for unbounded radiation problems: the unbounded

assumption is naturally implied in the integral relation.

However, one major drawback for these integration based methods is the dense nature

of the resulting matrix equation. It imposes significant computational difficulties when

solving the huge dense linear system produced by volume integral equations when mod-

elling inhomogeneities.

The parallel branch to the integration based methods are the differentiation based

methods since they are derived directly or indirectly from the partial differential equa-

tions (PDE). The finite element (FE) [185, 92, 162] and finite-difference time-domain

(FDTD) methods [203, 188, 189, 190] are among the most popular. The finite ele-

ment method results from the implementation of the variational principle in differential

equations, similar to MoM in integration-based methods; whereas the FDTD method is

based on direct discretization of the differential operators into difference operators. A
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Table 3.1: Major differences between FE and FDTD method in their generic forms
method name FE FDTD
mathematical
foundation

variational principle difference representation of
derivative

applied equa-
tions

not specific (Helmholtz equa-
tion in many EM problems)

Maxwell’s equation

mesh flexible, conformal to arbi-
trary boundaries

less flexible, orthogonal grids

problem type frequency domain time domain
relationship implicit explicit
solving methods sparse matrix solver explicit update

list of the major differences between the FE and FDTD methods is provided in Table

3.1. In this chapter and the following chapters, these two methods are the major numer-

ical algorithms for modelling the forward fields in microwave image reconstructions.

The advantages of the differentiation-based methods lie in the fact that they are 1)

simple and straightforward to formulate, 2) yield sparse matrices, and 3) easily model

problems with inhomogeneities. The associated major disadvantages stem from 1) the

differentiation-based methods requiring the discretization of the whole computational

domain using a volumetric mesh resulting in a large unknown, 2) for unbounded ra-

diation problems, the mesh needs to be terminated by absorbing boundary conditions

(ABC) which adds to the modelling complexity.

The research on high-efficient absorbing boundary conditions is an active field of

research in CEM. Traditional ABC’s are mostly mathematical boundary conditions,

i.e. they impose special equations at the boundary nodes which are derived from the

PDE’s. Comprehensive reviews of the traditional ABC’s can be found in [162, 189]. A

group of traditional ABC’s are based on one-way wave principle by decomposing the

wave operator at the boundary into waves propagating along opposite directions and

eliminating the outgoing waves. This principle is simple to implement; however, it is
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selective with respect to frequency and wave incidence angle. For wide band signals or

near field radiation problems, unsatisfactory high reflection levels can be observed from

these RBC’s. Another technique is to utilize the integral-based methods to handle the

unbounded radiation outside the mesh while using differential-based methods to model

the inhomogeneities in the target domain. The combination of the differentiation and

integration-based methods was used by Paulsen and Meaney [127] for developing the

first image reconstruction algorithm at Dartmouth. This method will be discussed in

details in Section 3.4.

In contrast to mathematical boundary conditions, a material boundary condition

refers to an ABC that retains the basic PDE equations while utilizing special dielec-

tric properties to attenuate the outgoing waves. One of the most attractive ABC’s re-

cently developed for terminating an FDTD grid is the perfectly matched layer (PML)

ABC. [8, 9]. By using a layer of specially designed artificial materials instead of math-

ematical processes, the PML ABC can efficiently attenuate the outgoing wave and theo-

retically produce “perfect” transmission for signals at arbitrary frequency and incidence

angles. Only nominal numerical reflections are observed due to the discretization of

the PML material. Due to the excellent performance of the PML, this ABC has been

extended to cases with lossy medium and situations utilizing cylindrical/spherical co-

ordinate and non-conformal meshes [35]. There are also PML ABC for finite element

methods [130]. In Section 4 and 5, the PML ABC in coordination with the FDTD

method to compute the forward field distribution for microwave imaging.
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3.2.3 Gauss-Newton method

Basic formulation

Assuming the electric field measurement, denoted as Emeas, are recorded at Nr receivers

located at {~r′i }
Nr
i=1, from the discussions in Section 2.5, to reconstruct the unknown pa-

rameters, a sum-of-square optimization problem is formulated as

min
k2

S = (Emeas − ΛE)T W(Emeas − ΛE) + (k2∗ − k2)T U(k2∗ − k2) (3.16)

where Λ is a sampling matrix provided by the selected basis functions in the discretiza-

tion scheme. W and U are weighting matrices and k2∗ is the a priori solution to k2. The

corresponding Gauss-Newton update equation is given by

k2
(i+1) = k2

(i) +
(

JT
(i)WJ(i) + U

)−1 (

JT
(i)W

(Emeas − ΛE(i)
)

+ U(k2∗ − k2
(i))

)

(3.17)

where J(i) =
dE
dk

∣

∣

∣k=k(i)
is the Jacobian matrix at the i-th iteration representing the sensitiv-

ity between the field distribution with respect to perturbations of the dielectric proper-

ties (more details about the Jacobian matrix construction can be found in Section 5.1.2

and Chapter 7).

As mentioned earlier, the selections of W, U and k2∗ depend on the statistical prop-

erties of measurement noise and the parameter k. For illustrative purposes, the OLS

(ordinary least-square) estimator is used for demonstrating the basic methodologies.

The statistical assumptions of the OLS estimator can be found in Section 2.5. We have

characterized the actual statistical properties of the measurement data for our current

imaging system and the findings are summarized in Appendix B.
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The update scheme (3.17) now becomes

k2
(i+1) = k2

(i) +
(

JT
(i)J(i)

)−1 (

JT
(i)

(Emeas − ΛE(i)
)

)

(3.18)

or

G(i)∆k2
(i) = JT

(i)∆E(i) (3.19)

where G(i) = JT
(i) J(i) is the Gauss-Hessian matrix, and ∆k2

(i) = k2
(i+1) − k2

(i) and ∆E(i) =

Emeas − ΛE(i) are the parameter update and electric field misfit, respectively.

The reconstruction problem is inherently ill-posed and manifests itself as the ill-

conditioning of matrix G. Regularization techniques are subsequently required for

solving the linear equation (3.19). Assuming the Tikhonov regularization is chosen,

the final form of the update equation is written as

(G(i) + λ(i)I
)

∆k2
(i) = JT

(i)∆E(i) (3.20)

where λ(i) is the scalar regularization parameter and I is the identity matrix. Among the

various techniques for selecting the regularization parameter λi, the empirical method

developed by Hogunin et al. [86] and Jaochimowicz et al. [93] is simple to compute

and has consistently demonstrated good performance in a large number of reconstruc-

tions with our application. In this method, the value of λ(i) is computed by the following

equation [56]

λ(i) = α
tr(G(i))

P

( ||∆E(i)||
||∆E(1)||

)2

(3.21)

where α is a user supplied constant, P is the number of the unknowns, tr(G(i)) is the trace

of matrix G(i), i.e. the summation of the diagonal elements, and ||∆E(1)|| is the L2 norm

of the field misfit error at the first iteration. In most of the following reconstructions,
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we will use (3.21) to determine λ at each iteration.

Modifications to the update equation

Several empirical techniques were discussed and implemented in [151, 129]. These

techniques include the log-magnitude/phase form (LMPF) reconstruction algorithm,

spatial filter technique and parameter pre-scaling technique. Other modified Gauss-

Newton methods were also reported in the literature such as the damped Gauss-Newton

method and the L-matrix regularization method [76].

(a). The log-magnitude/phase form reconstruction

Equation (3.19) is called as the “normal equation” of

J(i)∆k2
(i) = ∆E(i) (3.22)

and the solutions of these two equations are essentially identical.

For the LMPF algorithm, (3.22) is first rewritten in a real form as















<e(J(i)) −=m(J(i))
=m(J(i)) <e(J(i))





























<e(∆k2
(i))

=m(∆k2
(i))















=















<e(∆E(i))
=m(∆E(i))















(3.23)

Subsequently, (3.23) is transformed into















J1 J2

J3 J4





























<e(∆k2
(i))

=m(∆k2
(i))















=















∆Γ(E(i))
∆Φ(E(i))















(3.24)

where Γ(·) represents the log-magnitude of a complex variable and Φ(·) represents its
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unwrapped phase. The submatrices on the LHS of (3.24) are defined by

J1 =
<e(E(i))<e(J(i))+=m(E(i))=m(J(i))

(<e(E(i)))2+(=m(E(i)))2

J2 =
−<e(E(i))=m(J(i))+=m(E(i))<e(J(i))

(<e(E(i)))2+(=m(E(i)))2

J3 =
<e(E(i))=m(J(i))−=m(E(i))<e(J(i))

(<e(E(i)))2+(=m(E(i)))2

J4 =
<e(E(i))<e(J(i))+=m(E(i))=m(J(i))

(<e(E(i)))2+(=m(E(i)))2

(3.25)

which were derived in [151]. Equation (3.24) is referred as the log-magnitude phase

form of the Gauss-Newton update equation. One may notice that J1 = J4 and J2 = −J3;

therefore, (3.25) can be further shorten as a complex equation, i.e.

J′(i)∆k2
(i) = ∆E′(i) (3.26)

where J′(i) = J1 + jJ3 and ∆E′(i) = ∆Γ(E(i)) + j∆Φ(E(i)). This method has demonstrated

improved performance in various simulation and measurement data reconstructions,

especially when the object is large and the contrast is high. However, the statistical

significance of this method is still under investigation.

(b). Spatial filter technique

A spatial filter technique refers to the nodal averaging process during each Gauss-

Newton iteration. The averaged value of each parameter can be expressed as

θτ = (1 − α)θτ +
α

Nτ

∑

i∈Rτ
θi (3.27)

where θτ denotes the τ-th parameter, α is a scalar quantity referred to the averaging fac-

tor,
∑

i∈Rτ denotes the summation over the neighboring nodes of the τ-th parameter node

and Nτ is the total number of the neighboring nodes. The application of this averaging

scheme results in a smoother image which is qualitatively similar to the results when

choosing larger regularization parameters.
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(c). The damped Gauss-Newton method

The damped Gauss-Newton method refers to the following update equation

k2
(i+1) = k2

(i) + s
(

JT
(i)J(i)

)−1 (

JT
(i)

(Emeas − ΛE(i)
)

)

(3.28)

where s is an empirical constant referred as the damping coefficient. Using a smaller s

value can reduce the oscillatory behavior during the Gauss-Newton iterative method.

(d). The parameter pre-scaling method

For the parameter pre-scaling method, the real form update equation prior to regu-

larization, i.e. (3.23), is modified as [129]















q<e(J(i)) −=m(J(i))
q=m(J(i)) <e(J(i))





























1
q<e(∆k2

(i))
=m(∆k2

(i))















=















<e(∆E(i))
=m(∆E(i))















(3.29)

where q is an empirical scalar term to scale the real and imaginary parts of the solution.

This method is essentially a special case of the general concept of matrix weighting

discussed in Section 2.5 and 6.2.3.

(e). The L matrix regularization

The L matrix method is a special case of Tikhonov regularization which penalizes

the spatial derivative of the solution instead of its absolution value. The identity matrix

in (3.20) is replaced by an L matrix as

(G(i) + λ(i)L
)

∆k2
(i) = JT

(i)∆E(i) (3.30)

where L is typically chosen as the discrete difference operator as demonstrated in [76].

The high-frequency oscillatory modes of the images are filtered by applying this regu-

larization which results in improved stability with the reconstruction being less sensitive
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to noise.

Summary

To summarize this subsection, we have outlined a regularized Gauss-Newton algorithm

for microwave imaging. The update equation (3.20) is simple and efficient for the cases

where the statistical assumptions are satisfied. Otherwise, the more complete form,

i.e. (3.17), should be used instead where the extra terms and coefficients need to be

determined from the statistics of the measurements.

3.2.4 Flow chart of the regularized Gauss-Newton method

Based on the analysis in the last subsection, a flow chart is drawn to illustrate the

detailed computational steps for a complete reconstruction (Figure 3.1). From the flow

chart, four key steps can be identified: (a) evaluation of the forward field solution, (b)

construction of the Jacobian matrix, (c) determination of the regularization parameter

and (d) updating the reconstruction parameters. The accuracy and efficiency of these

procedures are essential for a successful reconstruction. The remainder of this chapter

and the following two chapters will focus on improvements in forward modelling and

Jacobian matrix construction with other minor issues being mentioned briefly.

3.3 The dual-mesh scheme

In the previous section, the detail of the discretization process of equation (3.13) were

omitted for simplification and are discussed in more details here. Spatial basis functions

are introduced to approximate the continuous function by a finite summation. Assum-

ing {φi(~r)}∞i=1 is a complete orthogonal basis function set, an arbitrary spatial function
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Figure 3.1: Flow chart for illustrating reconstructions utilizing the regularized Gauss-
Newton method
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f (~r) can be expanded in terms of φi as

f (~r) = f ·Φ (3.31)

where f = { fi}∞i=1 and Φ = {φi(~r)}∞i=1 are two infinite vectors containing function coeffi-

cients and basis functions, respectively. Since an infinite vector can not be manipulated,

a truncation is needed to approximate the sum with a finite number of terms. Thus

(3.31) becomes

f (~r) ≈ fN ·ΦN (3.32)

where vectors fN and ΦN contain only the first N terms of their pre-truncated versions.

Returning to the microwave image reconstruction problem, the discretization pro-

cess must be applied to both the forward fields and property parameters. The more

general approach is to utilize two separate meshes for the field and parameter distribu-

tions (i.e. a dual-mesh pair) [155, 39], but for convenience, some investigators often

utilize a single mesh. There are several reasons why the dual-mesh approach is ad-

vantageous. First, the spatial domains for modelling the forward field and dielectric

inhomogeneity distributions may be significantly different in size. The forward field is

typically evaluated in a physically larger domain containing not only the target but all

of the transmitters, receivers and surrounding structures. Using identical mesh struc-

ture for both field and parameter representation could result in an uneconomic use of

memory and unwanted redundancy in the computations. Second, for most forward

modelling methods as listed in Section 3.2.2, a minimum mesh density or spatial sam-

pling rate per a given wavelength is typically required to assure accuracy of the forward

solution. On the other hand, the effective density for the parameter mesh is related to

the spatial variation of the actual dielectric distribution and the amount of data available
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(see Chapter 7). For most microwave imaging cases, the density of the forward mesh is

much higher than that of the parameter mesh. High density in reconstruction parameter

mesh will cause difficulties when solving the update equation (3.19) since it is a dense

matrix equation instead of the sparse matrices used in forward equation.

The implementation utilizing separate spatial basis function sets, i.e. the dual-mesh

scheme, is fairly simple and can be summarized by

~E(~r) ≈ ~E ·Φ
k2(~r) ≈ k2 ·Ψ

(3.33)

whereΦ = {φi(~r)}Ni=1 and Ψ = {ϕi(~r)}Pi=1 are the truncated basis set for fields and param-

eters, respectively, with N being the length of the discretized field vector and P being

that of the parameter vector. The implementation of a spatial basis function results in

a mesh which includes a set of discrete nodes, the connections between nodes and the

interpolation functions in each individual element. The mesh for representing the for-

ward field is referred as the forward mesh, while that for the dielectric properties is the

parameter mesh. Vector ~E is the field defined over the forward mesh whereas vector k2

is the parameter defined on the parameter mesh.

When solving the forward field equation (3.13), the electric properties must be

known at the forward mesh nodes. To accommodate this, an interpolation process is

performed to transfer the parameters defined on the reconstruction mesh to the forward

mesh. Similarly, when constructing the Jacobian matrix, the field values need to be in-

terpolated from the forward mesh to the parameter node locations. These interpolations

can be mathematical expressed as expansions between the two basis function sets, i.e.

Φ = A fΨ

Ψ = ApΦ
(3.34)



88 Chapter 3. Dual-mesh based 2D reconstruction algorithms

where the matrix A f represents the linear interpolation from the parameter basis vector

Ψ to the forward basis vectorΦ, and Ap performs the mapping in the reversed direction.

The dimension of A f is N × P whereas that of Ap is P × N, and both can be pre-

computed and stored for a given dual-mesh pair. Combining (3.34) and (3.33), the

interpolated field over the reconstruction mesh Ep and the interpolated parameter k2
f

over the forward mesh can be expressed as

~Ep = AT
f
~E

k2
f = AT

p k2 (3.35)

The forward and parameter basis functions and the bilateral mapping relationship are

illustrated in Figure 3.2.

k
2

Parameter 

mesh

Forward 

mesh

EA
f

A
p

{ϕ }
i

{φ }
i

Figure 3.2: Dual-mesh mapping between the forward and parameter meshes

The implementation of the dual-mesh representation allows for the forward solution

and parameter distribution to be mapped accurately between meshes and effectively de-

couples the forward and inverse phases of the reconstruction process. Different forward

solution or reconstruction algorithms can be easily substituted into the reconstruction

process with only nominal perturbations to the overall reconstruction. Utilizing the

dual-mesh scheme, we have studied a number of forward methods with incrementally

increased model complexities. The forward solution methods and the corresponding

reconstruction algorithms used are summarized in Table 3.2. Among them, the 2D
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Table 3.2: Dual-mesh based algorithms
forward mesh 2D 3D

field representation scalar vector(TM) scalar vector
2D reconstruction mesh 2Ds/2D 2DsFDTD/2D 3Ds/2D -
3D reconstruction mesh - - 3Ds/3D 3Dv/3D

methods are discussed in the following sections of this chapter, whereas the 3D meth-

ods will be discussed in Chapter 4 and 5.

3.4 2D scalar forward field coupled with 2D parameter

reconstruction

Two-dimensional scalar forward field coupled with 2D parameter reconstruction, re-

ferred as 2Ds/2D method, is the first algorithm developed at Dartmouth College for mi-

crowave imaging. This algorithm was introduced by Paulsen et al. in the early 1990’s.

In the reconstruction, the forward field distribution is formulated as a 2D problem under

the following assumptions:

1. the scattering dielectric profile is a 2D distribution, i.e. no variations along z-

direction, or dk2(~r)
dz = 0;

2. the source is an infinitely long line source parallel to z-axis;

3. and consequently the propagating wave is assumed to be a transverse magnetic

(TM) wave where the ~E vector is parallel to z-axis, i.e. Ex(~r) = Ey(~r) = 0.

The third term in (3.13) is discarded, i.e.

~E(~r) · ∇k2(~r) = Ex(~r)dk2(~r)
dx + Ey(~r)dk2(~r)

dy + Ez(~r)dk2(~r)
dz = 0 (3.36)
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Consequently, the x, y and z components in the forward equation (3.13) can be de-

coupled, and only the Ez component is nonzero. The resultant equation is written as

∇2Ez(~r) + k2(~r)Ez(~r) = jωµ0Jz(~r) (3.37)

Equation 3.37 is the frequency domain scalar forward model (Helmholtz equation)

which must be solved in the 2D scalar reconstructions.

Ω FE

Ω BE
Ω BE

target
object

antennas

BE integration
path

transmitter

Figure 3.3: The geometric configuration for forward field modelling utilizing FE and
BE methods.

Considering the experimental settings for microwave tomographic imaging (as shown

in Figure 3.3), the target object is generally located within an imaging zone and sur-

rounded by a circular antenna array. The homogeneous background medium fills the

remaining space. Within the imaging zone, the field variations due to the target inho-

mogeneity can be conveniently modelled using the finite element (FE) method; whereas

in the exterior region, the boundary element (BE) method is ideally suited to account

for the unbounded radiation. As a result, a hybrid method combining the FE and BE

methods was devised to model the forward field distribution in the 2D scalar problem.
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The FE region as well as the integral path for BE problem are shown in Figure 3.3.

Note that the imaging zone ΩFE and the complementary space ΩBE share an identical

boundary ∂ΩBE (here we assume ΩBE, ΩFE and ∂ΩBE are the discretized geometries

whose boundaries are comprised of straight line segments). We will discuss the field

modelling with ΩFE and ΩBE separately in the following subsections.

3.4.1 Finite element region

Within the FE zone, the Helmholtz equation (3.37) is linearized into a matrix relation-

ship by the variational principle. The procedure of applying the variational principle

consists of two steps. First, the continuous form scalar functions, Ez(~r) and k2(~r), are

expanded by a truncated spatial basis function set as described in the previous section.

The discretized field and parameter distributions are represented by (3.33). Substituting

the expanded expressions into (3.37), we get

N
∑

i=1

(

Ezi∇2φi(~r)
)

+

P
∑

l=1

N
∑

i=1

(

k2
l ϕl(~r)Eziφi(~r)

)

= jωµ0Jz(~r) (3.38)

where N is the number of the forward nodes and P is that of the parameter nodes.

Second, integrating (3.38) with another set of orthogonal functions, referred as the

weighting functions, {w`(~r)}N
`=1, (also defined on the forward mesh) results in

N
∑

i=1

(

Ezi
〈

∇2φi(~r),w`(~r)
〉)

+

P
∑

l=1

N
∑

i=1

(

k2
l Ezi

〈

ϕl(~r)φi(~r),w`(~r)
〉

)

= jωµ0
〈Jz(~r),w`(~r)

〉

(3.39)

where 〈·, ·〉 is the notation for inner product between two functions defined by

〈 f (~r), g(~r)〉 =
∫

Ω

f (~r)g(~r)d~r (3.40)
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withΩ being the domain where real functions f and g are defined. There are numerous

choices for the weighting function, w(~r). One of the most popular is the Galerkin

method which uses the same basis function φ used to discretize the forward solution,

i.e. wi(~r) = φi(~r). Applying the Galerkin method in combination with the Green’s first

identity:

〈∇2φi(~r), φ`(~r)〉 = −〈∇φi(~r),∇φ`(~r)〉 +
∫

∂Ω

φ`(~r)∇φi(~r) · d~r (3.41)

equation (3.39) becomes

∑N
i=1

(Ezi
〈∇φi(~r),∇φ`(~r)

〉)

+
∑N

i=1

(

Ezi
∫

∂ΩBE
φ`(~r)∇φi(~r) · d~r

)

− ∑P
l=1

∑N
i=1

(

k2
l Ezi

〈

ϕl(~r)φi(~r), φ`(~r)
〉

)

= − jωµ0
〈Jz(~r), φ`(~r)

〉
(3.42)

For all φ`(~r), ` = 1, · · · ,N, (3.39) comprises a simultaneous system of equations

with N equations and N unknowns. If k2
i is known (in the configuration in Figure 3.3,

there is no source located inside ΩFE , thus Jz(~r) = 0), this equation system becomes a

linear equation for Ezi similar to (3.14):

A(k2)Ez = B∇E (3.43)

where A(k2) is the forward FE matrix containing parameter k2, the RHS matrix B and

vector ∇E represent the discretized integration term in (3.42) evaluated along the mesh

surface.

Equation (3.43) by itself is insufficient to uniquely solve for the field without ap-

plying boundary conditions. For convenience, we rearrange the matrix equation (3.43)

to group the field values at interior nodes and boundary nodes separately as















AII AIB

ABI ABB





























EI

EB















=















0 0
0 BB





























0
∇EB















(3.44)
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where EI is the vector containing Ez fields at the interior nodes, EB is the corresponding

vector for the boundary nodes. AII , AIB, ABI and ABB are the associated partitions of the

A matrix. The surface integration on the RHS involves only field gradients, denoted by

∇EB, at mesh boundaries. In order to solve for the Ez on the FE mesh, vector ∇EB must

be obtained. To accomplish this without the use of approximate boundary conditions,

we apply the boundary element method for the surrounding region.

3.4.2 Boundary element region

There are several important distinctions between the BE and FE regions, ΩBE and ΩFE ,

respectively. First, ΩBE consists of a homogeneous background medium; therefore,

k2(~r) can be replaced by a constant k2
bk. Second, the source is located inside ΩBE. We

assume that the source is a point source with normalizing amplitude located at ~rs, i.e.

Jz(~r) = −1
jωµ0
δ(~r − ~rs) (3.45)

where δ(·) is a Dirac delta function. Inserting (3.45) into (3.37), the differential equation

for the BE region looks like

∇2Ez(~r) + k2
bkEz(~r) = −δ(~r − ~rs) (3.46)

The solution to (3.46) is the 2D Green’s function:

g(~r) = j
4

H(1)
0 (kbk |~r − ~rs|) (3.47)
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Applying Green’s second identity

∫

Ω

u(~r)∇2v(~r) − v(~r)∇2u(~r)d(~r) =
∫

∂Ω

u(~r)∇v(~r) − v(~r)∇u(~r)d(~r) (3.48)

and letting u(~r) = Ez(~r), v(~r) = g(~r) and Ω = ΩBE, we obtain an expression for the

electric field at any given point ~r ∈ ΩBE in terms of a boundary integration [127]:

αEz(~r) =
∫

∂ΩBE

Ez(~r)∇g(~r) − g(~r)∇Ez(~r)d(~r) (3.49)

where α is a scalar constant defined by

α =















1/2 ~r ∈ ∂ΩBE

1 ~r < ∂ΩBE
(3.50)

In order to couple this with the FE representation, the boundary ∂ΩBE is discretized

in exactly the same manner as the boundary of the finite element mesh, i.e. the nodes

and the basis function are precisely matched along the boundary. Sequentially mov-

ing ~r over each of a boundary nodes, the version of equation (3.49) provides a matrix

equation relating the field value and the field gradient at the boundary nodes. The BE

equation is then given by

D∇EB = CEB (3.51)

Assuming the boundary node number is NB and the interior node number is NI ,

equation (3.44) provides NI + NB linear equations while (3.51) provides another NB

equations for a total of NI + 2NB constraints. In association with this, there are NI +

2NB unknowns related to vectors EI , EB and ∇EB. Therefore, we expect to be able to

compute a unique solution to the coupled equation set of (3.44) and (3.51). Note that

the FE equation has a sparse LHS matrix while in BE problem, matrices C and D are
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both dense and well-posed. Because the number of boundary nodes is typically much

smaller than that for the interior nodes, the inversion of D can be pre-computed (since

we assume that the surrounding medium properties do not change) to solve for vector

∇EB as

∇EB = D−1CEB (3.52)

Substituting (3.52) into the FE matrix equation (3.13) produces an integrated system of

equations,














AII AIB

ABI ABB − BBD−1C





























EI

EB















=















0
0















(3.53)

from which the forward field vectors EI and EB associated with a single transmitter can

be computed. For the reconstruction problem, this equation needs to be solved for all

transmitters at each iteration.

3.5 Building the Jacobian matrix

In the iterative scheme as we outlined above, the Jacobian matrix must be constructed

based on the forward field distribution computed by the matrix equations in the last

section. Paulsen et al. used a method referred as the sensitivity equation [112, 127].

In order to construct the Jacobian matrix, the derivative of equation (3.14) is computed

with respect to the τ-th parameter, k2
τ ,

A(k2)
(

dE
dk2
τ

)

= −
(

dA(k2)
dk2
τ

)

E (3.54)

Note that b is not a function of k2
τ . Because the forward solution is also computed at

each iteration, both E and A(k2) are already known. Therefore, only
(

dA(k2)
dk2
τ

)

needs to

be constructed to compute
(

dE
dk2
τ

)

which constitutes the terms of the Jacobian matrix, J.
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From (3.42), the actual forms of
(

dA(k2)
dk2
τ

)

is

dai,`

dk2
τ

=
〈

φi(~r)φ`(~r)ϕτ(~r)〉 (3.55)

where ai,` is an element of the A matrix, and the RHS represents the integration of the

product of three basis functions over the space where they all exist.

Given the forward field vector E, one needs to solve
(

dE
dk2
τ

)

from matrix equation

(3.54) for all parameter nodes τ and all sources to construct the full Jacobian matrix. If

there are P nodes in the reconstruction mesh and Ns sources in the problem, the total

number of solutions needed to build the Jacobian matrix from (3.54) is Ns × P. Each

is essentially a back-substitution for the factored A matrix. Including the forward field

solution, the total number of matrix back-substitutions is Ns(P + 1) for each iteration.

Experiments have shown that with the 2D scalar reconstruction algorithm above, the

evaluation of a single iteration requires more than an hour on an SGI workstation with

a typical problem size (P = 144 and Ns = 16), for which the time needed for building

Jacobian matrix consumed more than 90% of the total computation time. While this

approach works, this example demonstrates the unsatisfactory efficiency of the sensi-

tivity equation method. More efficient algorithms for building the Jacobian matrix will

be discussed in Chapters 4 and 5.

3.6 2D FDTD forward field solution coupled with 2D

parameter reconstruction

Several difficulties were observed during the application of the 2D scalar reconstruc-

tion technique introduced above. The need for constructing and solving the boundary



3.6. 2D FDTD forward field solution coupled with 2D parameter reconstruction97

element equation (3.49) complicates both the programming and optimization of the al-

gorithm. The interaction of the BE and FE equations also significantly increases the

bandwidth of the final matrix equation, subsequently increasing the computation time.

More importantly, the sensitivity equation method for constructing the Jacobian matrix

severely limits the overall computational efficiency. In terms of improving the latter

point, we have developed the adjoint method [30] and its fast approximation which will

be discussed in detail in Chapters 4 and 5. In this section, we will also implemented

another forward solution technique, the FDTD method, to investigate the possibility of

improving the efficiency of the field modelling (Note that in the 2D FDTD method, the

TM vector field is essentially equivalent to the scalar model derived for the FE/BE hy-

brid method in the frequency domain. To distinguish these two algorithms, we denotes

the former as 2Ds(FDTD) while the latter as 2Ds).

The FDTD method is attractive for the following reasons:

1. the modelling technique along with the implementation of the absorbing bound-

ary conditions are conceptually straightforward and intuitively simple to pro-

gram,

2. in general, the performance of the perfectly matched layer (PML) absorbing

boundary condition (ABC) is significantly better than other existing approximate

boundary conditions,

3. the marching-on-time (MOT) feature of the FDTD method provides various pos-

sibilities for accelerating the computation,

4. in both 2D and 3D, the FDTD method possesses computational advantages in

total floating-point operations compared with the previous 2D scalar technique

(Illustrated in Section 3.6.1).
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In the remainder of this section, the basic formulations of the 2D FDTD method and

the implementation of the generalized PML (GPML) ABC will be discussed. Addition-

ally, an analysis of the computational efficiency as well as miscellaneous implementa-

tion details such as applying source excitations, amplitude/phase detection schemes and

analysis of the stability and numerical dispersion will be investigated.

3.6.1 2D FDTD method

The FDTD method is derived directly from the discretized form of Maxwell’s curl

equations (3.1). Due to matching in grid topologies with the curl relationships of the

electromagnetic field, the FDTD method exhibits significant superiority in modelling

the EM wave phenomena.

FDTD update scheme

For the 2D FDTD method, we make the same assumptions as those used for the 2D

scalar method (Section 3.4), i.e. a 2D dielectric property distribution along with a TM

wave with a z-oriented E field. In this case, the curl equations (3.1) can be expanded as

µ(x, y) ∂Hx(x,y)
∂t = −∂Ez(x,y)

∂y
µ(x, y) ∂Hy(x,y)

∂t =
∂Ez(x,y)
∂x

ε(x, y) ∂Ez(x,y)
∂t + σ(x, y)Ez(x, y) =

(

∂Hy(x,y)
∂x − ∂Hx(x,y)

∂y

)

(3.56)

where µ(x, y), ε(x, y) and σ(x, y) are the 2D permeability, permittivity and electrical

conductivity distributions, respectively. In the microwave imaging case, µ(x, y) = µ0

due to the non-magnetic nature of biological tissues.

In 1966, Yee devised a special staggered grid [203], referred as the Yee’s grid, for

discretizing Maxwell’s equations in the form of (3.1) or (3.56). In 2D rectangular space,

this grid has two variants as illustrated in Figure 3.4.
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Figure 3.4: Two-dimensional FDTD meshes: (a) E-grid, (b) H-grid

In Figure 3.4, (a) is referred as the E-grid while (b) is referred as the H-grid. De-

spite the apparent differences, they actually denote the same spatial arrangement except

that each starts from location (1/2,1/2) of the other grid (nodal spacing set to 1). For

consistency, we will only use the E-grid.

Given the indices shown in the figure, the ~H vectors have one index located at half

grid spacing denoted by i ± 1/2 or j ± 1/2 (i is the x-index, j is the y-index). Applying

the difference representation for all temporal and spatial differential operators in (3.56),

i.e.
∂ f
∂ξ
=

fξ+∆ξ/2 − fξ−∆ξ/2
∆ξ

(3.57)

where ξ can be x, y or t. ∆x and ∆y represent the grid sizes in x and y directions,

respectively, and ∆t is the time step size. The difference form of ∂
∂t involves the half

time steps t + ∆t/2 and t − ∆t/2. Therefore, the derivative-free terms in (3.56) are

replaced by averaged values on these two time steps, i.e.

f (t) = f t+∆t/2 + f t−∆t/2

2
(3.58)
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Figure 3.5: Illustration of the vectors around node (i, j)

Thus, the discretized form of equation (3.56) looks like

µ(pB) H
n+ 1

2
x (pB)−Hn−1/2

x (pB)
∆t = −En

z (pCC )−En
z (pBB)

∆y

µ(pL) H
n+ 1

2
y (pL)−Hn−1/2

y (pL)
∆t =

En
z (pCC )−En

z (pLL)
∆x

ε(pCC) En+1
z (pCC )−En

z (pCC )
∆t + σ(pCC) En+1

z (pCC )+En
z (pCC )

2 =

H
n+ 1

2
y (pR)−H

n+ 1
2

y (pL)
∆x − H

n+ 1
2

x (pT )−H
n+ 1

2
x (pB)

∆y

(3.59)

where pL, pR, pT , pB, pCC , pLL and pBB are all symbols of spatial points marked on Fig-

ure 3.5.

Moving the terms from the latest time step to the LHS of the equation, i.e. terms at

time step n+ 1/2 in the first two equations and n+ 1 for the third equation, and moving

the remainder to the RHS, we subsequently obtain the explicit update equations for Hx,
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Hy and Ez as

Hn+ 1
2

x (pB) = cAHx(pB)Hn− 1
2

x (pB) + cBHx(pB)
(En

z (pBB)−En
z (pCC )

∆y

)

Hn+ 1
2

y (pL) = cAHy(pL)Hn− 1
2

x (pL) + cBHy(pL)
(En

z (pCC )−En
z (pLL)

∆x

)

En+1
z (pCC) = cAEz(pCC)En

z (pCC)

+cBEz(pCC)
(

H
n+ 1

2
y (pR)−H

n+ 1
2

y (pL)
∆x − H

n+ 1
2

x (pT )−H
n+ 1

2
x (pB)

∆y

)

(3.60)

where cAHx, cBHx etc. are the coefficients defined by

cAHx(p) = 1
cBHx(p) = ∆t

µ(p)
cAHy(p) = 1
cBHy(p) = ∆t

µ(p)
cAEz(p) = 2ε(p)−σ(p)∆t

2ε(p)+σ(p)∆t
cBEz(p) = 2∆t

2ε(p)+σ(p)∆t

(3.61)

Assuming the 2D FDTD mesh stretches throughout space, if we are given the Ez

field at t = 0, evaluation of the first two equations in (3.60) produces the magnetic fields

at t = ∆t/2. The third equation provides the electric fields at t = ∆t. Repeating this

update scheme, we obtain the complete history of all field quantities for all time steps.

Unfortunately, for real computations, the mesh size is finite and we must apply

boundary conditions to simulate unbounded radiation similar to the previous case. In

the following section, we will examine an efficient material-based ABC, the generalized

PML absorbing boundary condition.

Generalized PML absorbing boundary condition

One of the most successful material-based ABC’s is the perfectly matched layer (PML)

technique initially proposed by Berenger in 1994 [8]. The original work focused on

the matching the domains filled with lossless media such as free space in 2D. Shortly
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after the publication of the first PML paper, this concept was extended to 3D Carte-

sian space by Berenger [9] and to other orthogonal coordinate systems by Chew, Wee-

don [35] and Rappaport [165]. For lossy media, Fang and Wu developed a generalized

PML (GPML) technique [48, 49] as well as Gedney’s uniaxial PML (UPML) tech-

nique [61, 62] among others. Considering the lossy nature of biological tissues, we

chose to implement the GPML in the 2D FDTD forward computation and the UPML in

the 3D FDTD. In this section we will describe the formulations of the 2D GPML while

the development of the PML for the 3D FDTD problem can be found in Chapter 5.

The stretched coordinate notation introduced by Chew and Weedon [35] greatly

simplifies the derivation and extension of the PML. With this notation, the frequency

domain curl equations (3.5) for isotropic lossy media (magnetic current term is also

considered since the PML medium is an artificial material) can be written as

∇s × ~E(~r) = − jωµ(~r) ~H(~r) − σ∗(~r)H(~r)
∇s × ~H(~r) = jωε(~r) ~E(~r) + σ(~r) ~E(~r)

(3.62)

where

∇s =
∂

∂x̃ x̂ + ∂
∂ỹ ŷ + ∂

∂z̃ ẑ (3.63)

and
x̃ =

∫ x
0 sx(x′)dx′

ỹ =
∫ y

0 sy(y′)dy′

z̃ =
∫ z

0 sz(z′)dz′
(3.64)

are the stretched coordinates by function sx(x), sy(y) and sz(z) which are referred as the

coordinate stretching coefficients. Substituting (3.64) into (3.63) we get

∇s =
1
sx

∂

∂x x̂ + 1
sy

∂

∂y ŷ + 1
sz

∂

∂z ẑ (3.65)

from which the meanings of the coordinate stretching coefficient can be readily illus-
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trated. Consequently, if sx = sy = sz = 1, the electric and magnetic field distributions

computed from (3.62) will be identical to the solution of the normal Maxwell’s equa-

tions.

εIr , σ
I , µI

sIx, s
I
y

εIIr , σ
II , µII

sIIx , s
II
y

Figure 3.6: Matching condition at an interface perpendicular to x-axis

Considering a vertical interface perpendicular to x-axis between two lossy medium

with each one characterized by a set of dielectric properties and coordinate stretching

coefficients as noted in Figure 3.6, Fang and Wu showed in [49] that if the following

conditions are met at the interface

ε I = ε II

µI = µII

sI
y = sII

y

sI
z = sII

z

(3.66)

the plane waves incident at any direction with any polarization and frequency will be

transmitted to the second medium with zero reflection. Applying the rotational rule to

the subscripts in (3.66) (i.e. replacing x by y, y by z and z by x denoted as x → y →

z→ x), condition (3.66) will match the interfaces perpendicular to y and z axis.

To transmit waves without reflections from medium 1 to medium 2 is only part of

the rationale behind the PML absorbing boundary. The other is to attenuate the wave

efficiently in medium 2 such that even if the medium 2 is terminated with a reflect-

ing boundary (such as perfect electrical conductor - PEC), only minimal signals are
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reflected back into medium 1. To achieve the second goal, the artificial anisotropic

conductivity, σξ, and magnetic conductivity, σ∗ξ satisfying the matching condition as

demonstrated by Berenger [8], i.e.

σξ

ε
=
σ∗ξ

µ
(3.67)

are introduced and embedded in the coordinate stretching coefficient s function. One

possible form for s is

sξ(ξ) = sξ0(ξ)
(

1 + σξ(ξ)jωε

)

(3.68)

where ξ = x, y, z and sξ0(ξ) and σξ(ξ) are functions that need to be determined. Fang

and Wu proposed the following form

sξ0(ξ) = 1 + smax
(

ξ

∆ξ

)sexp

σξ0(ξ) = σmax sin2
(

πξ

2∆ξ

) (3.69)

for sξ0(ξ) and σξ(ξ) where ξ denotes the distance to the boundary (note that σ∗ξ can be

consequently determined from (3.67)); ∆ξ is the grid size along that direction; smax, sexp

and σmax are constants.

In the 2D Cartesian coordinate system, in order to match all boundaries, the PML

media are typically arranged in the manner suggested in Figure 3.7. Eight PML slabs

are used to surround the working volume among which four edge slabs are used to

match the working volume boundaries and four corner slabs are used to match the

neighboring edge slabs. The working volume contains the inhomogeneous target struc-

ture which is surrounded by the homogeneous background medium with properties εbk,

µbk and σbk. As has been previously shown, the working volume can be treated as a

special PML medium by simply setting sx = sy = 1 and σξ = σ∗ξ = 0. From (3.69), this
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Figure 3.7: Coordinate stretching coefficients in various PML slabs.

implies that sx0 = sy0 = 1 and σx0 = σy0 = 0. Additionally, from the matching con-

dition (3.66), the coefficient sy in the PML media of regions IV and VI should match

that of the working volume. Likewise, so should be sx in regions II and VIII. In order

to effectively attenuate the outgoing wave, the s function in the parallel direction to

the interface inside the edge slabs should have gradually increasing values as depicted

in equation (3.69). This gradually increasing function is denoted as sδ where δ is the

perpendicular distance to the interface. In the corner regions, the attenuated waves in

the neighboring edge slabs enter through interior interfaces (denoted by dashed lines in

Figure 3.7). In order to match the medium at these interfaces, the s functions in the cor-

ner regions should match the perpendicular species of their neighbors. i.e., sx = sy = sδ.

Besides the settings of s functions, the ε, µ and σ value of all PML slabs are identical

to the most exterior value of the working volume, i.e. εbk, µbk and σbk. To summarize

the settings of the PML medium, Table 3.3 lists the dielectric values and coordinate

stretching functions in all 8 PML slabs.

Since the EM waves are sufficiently attenuated inside the surrounding PML region,

the most exterior boundaries (denoted by thin solid lines in Figure 3.7) can safely use a
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Table 3.3: PML settings in the various domains
region PML parameter settings

I εbk, µbk, σbk, sx = sδx, sy = sδy
II εbk, µbk, σbk, sx = 1, sy = sδy
III εbk, µbk, σbk, sx = sδx, sy = sδy
IV εbk, µbk, σbk, sx = sδx, sy = 1
V inhomogeneities,sx = 1, sy = 1
VI εbk, µbk, σbk, sx = sδx, sy = 1
VII εbk, µbk, σbk, sx = sδx, sy = sδy
VIII εbk, µbk, σbk, sx = 1, sy = sδ
IX εbk, µbk, σbk, sx = sδx, sy = sδy

PEC boundary condition, i.e. setting the tangential E field to zeros.

A split-field Maxwell’s equation was employed by Fang and Wu [49] by letting

Ez(t,~r) = Ezx(t,~r) + Ezy(t,~r) (3.70)

and the frequency domain Maxwell’s equations (3.62) in the 2D TM wave case were

expanded to
− ∂Hx(~r)

sy0(y)∂y =
(

jωε + σ + σy +
σσy
jωε

)

Ezy(~r)
∂Hy(~r)

sx0(x)∂x =
(

jωε + σ + σx +
σσx
jωε

)

Ezx(~r)
∂Ez(~r)

sx0(x)∂x =
(

jωµ + σ∗ + σ∗x +
σ∗σ∗x
jωµ

)

Hy(~r)
− ∂Ez(~r)

sy0(y)∂y =

(

jωµ + σ∗ + σ∗y +
σ∗σ∗y
jωµ

)

Hx(~r)

(3.71)

Performing Fourier transforms to both sides of equation (3.71), the time-domain repre-

sentation is obtained as follows

−∂Hx(t,~r)
sy0(y)∂y = ε

∂Ezy(t,~r)
∂t + (σ + σy)Ezy(t,~r) + σσy

ε
E I

zy(t,~r)
∂Hy(t,~r)
sx0(x)∂x = ε

∂Ezx(t,~r)
∂t + (σ + σy)Ezx(t,~r) + σσx

ε
E I

zx(t,~r)
∂Ez(t,~r)
sx0(x)∂x = µ

∂Hy(t,~r)
∂t + (σ∗ + σ∗x)Hy(t,~r) + σ

∗σ∗x
µ

HI
y(t,~r)

− ∂Ez(t,~r)
sy0(y)∂y = µ

∂Hx(t,~r)
∂t + (σ∗ + σ∗y)Hx(t,~r) + σ

∗σ∗y
µ

HI
x(t,~r)

(3.72)
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where
E I

zx(t,~r) =
∫ t
−∞ Ezx(t′,~r)dt′

E I
zy(t,~r) =

∫ t
−∞ Ezy(t′,~r)dt′

HI
x(t,~r) =

∫ t
−∞ Hx(t′,~r)dt′

HI
y(t,~r) =

∫ t
−∞ Hy(t′,~r)dt′

(3.73)

Equation (3.72) can consequently be discretized using the E-grid scheme mentioned

above. Notice that the split fields Ezx and Ezy are located at the same point as Ez. The

discretized update equations for the 2D cases are listed below:

Hn+ 1
2

x (pB) = cAHx(pB)Hn− 1
2

x (pB) + cBHx(pB)
(En

z (pBB)−En
z (pCC )

∆y

)

Hn+ 1
2

y (pL) = cAHy(pL)Hn− 1
2

x (pL) + cBHy(pL)
(En

z (pCC )−En
z (pLL)

∆x

)

En+1
zx (pCC ) = cAEzx(pCC )En

zx(pCC) + cBEzx(pCC)
(

H
n+ 1

2
y (pR)−H

n+ 1
2

y (pL)
∆x

)

+ cCEzx(pCC )E I
zx

n(pCC)

En+1
zy (pCC ) = cAEzy(pCC )En

zy(pCC) + cBEzy(pCC)
(

H
n+ 1

2
x (pT )−H

n+ 1
2

x (pB)
∆y

)

+ cCEzy(pCC )E I
zy

n(pCC)

E I
zx

n+1(pCC) = E I
zx

n(pCC) + ∆tEn+1
zx (pCC)

E I
zy

n+1(pCC) = E I
zy

n(pCC) + ∆tEn+1
zy (pCC)

(3.74)

where
cAHx(p) =

2µ(p)−(σ∗(p)+σ∗x(p))∆t
2µ(p)+(σ∗(p)+σ∗x(p))∆t

cBHx(p) = 2∆t
2µ(p)+(σ∗(p)+σ∗x(p))∆t

cAHy(p) =
2µ(p)−(σ∗(p)+σ∗x(p))∆t
2µ(p)+(σ∗(p)+σ∗x(p))∆t

cBHy(p) = 2∆t
2µ(p)+(σ∗(p)+σ∗x(p))∆t

cAEzx(p) = 2ε(p)−σ(p)∆t
2ε(p)+σ(p)∆t

cBEzx(p) = 2∆t
2ε(p)+σ(p)∆t

cCEzx(p) = 2∆tσ(p)σx(p)
2ε(p)+σ(p)∆t

cAEzy(p) = 2ε(p)−σ(p)∆t
2ε(p)+σ(p)∆t

cBEzy(p) = 2∆t
2ε(p)+σ(p)∆t

cCEzy(p) = 2∆tσ(p)σy(p)
2ε(p)+σ(p)∆t

(3.75)

and PB, PL,PCC are defined in Figure 3.5.

Equation (3.74) and (3.75) provide the update scheme for all interior field compo-

nents. Among the fields located at the most exterior boundary, the Ez component is the
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tangential electric field for 2D problems. Therefore, to apply the PEC BC on the outer

boundary, these E vectors are simply initialized to zeros and left un-updated. The H

field components on the exterior boundary are treated similarly since they are also zero.

A minor problem with the Nx = Ny = 4 and NPML = 3 case is illustrated in Figure

3.8. From the figure, the array size for Ez (including Ezx and Ezy) is (Nx + 2NPML + 1)×

(Ny + 2NPML + 1), that of Hx is (Nx + 2NPML + 1) × (Ny + 2NPML), and that of Hy is

(Nx+2NPML)×(Ny+2NPML+1). Because the fields on the outer boundary do not update,

the active array sizes are (Nx +2NPML)× (Ny+2NPML), (Nx +2NPML−1)× (Ny +2NPML)

and (Nx + 2NPML) × (Ny + 2NPML − 1) for Ez, Hx and Hy, respectively.
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σ∗x or σ∗y

σy and σ∗y

σx and σ∗x

Figure 3.8: Illustration of the FDTD mesh with GPML boundary condition and values
of the isotropic σ functions. The shaded cells are within the PML layers.

It should be noted that since sx = sy = 1 in the working volume, the differen-

tial equation with stretched coordinate is identical to the conventional curl equations;
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therefore, the update scheme (3.74) can be replaced by (3.60) without altering the field

values. This replacement can enhance the time savings because the total algebraic oper-

ation number is smaller with the conventional update scheme. However, to implement

this hybrid update scheme, one needs to split the spatial update for each region individ-

ually. This lengthens the program and complicates both debugging and code mainte-

nance. We applied the GPML update scheme throughout all subregions including the

working volume in our programs for simplicity.

Source implementation and steady state extraction

Equation (3.60) and (3.74) provide a mechanism to model the time-marching EM fields

over 2D grids. However, in order to initiate the wave propagation, sources or excita-

tions need to be incorporated into the update equation at each time step by means of

initial values, electrical currents, voltages or magnetic currents [102]. For the monopole

antenna used in the microwave imaging system at Dartmouth, the source is modelled

as a z-orientated time-harmonic point current source in form of

~Jz(t,~r) = J0 cos(ωt)δ(~r − ~rs) (3.76)

where J0 = 1/(ωµ0) is the amplitude and ~rs is the spatial location of the point source.

Notice that the phasor form of the source in (3.76) is Jz(~r) = J0 exp(ωt)δ(~r − ~rs) whose

Fourier transform gives the source similar to that in (3.45). When the working volume

is filled with the homogeneous background medium, the implementation of this source

produces the Green’s function (3.47) in the frequency domain.

Incorporating the source term into (3.72), we get the discretized update equations
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for the E field as follows

En+1
zx (pCC ) = cAEzx(pCC )En

zx(pCC ) + cBEzx(pCC)
(

H
n+ 1

2
y (pR)−H

n+ 1
2

y (pL)
∆x

)

+cCEzx(pCC )E I
zx

n(pCC ) + |J|
2 cos(ω(n∆t))

En+1
zy (pCC ) = cAEzy(pCC )En

zy(pCC) + cBEzy(pCC)
(

H
n+ 1

2
x (pT )−H

n+ 1
2

x (pB)
∆y

)

+cCEzy(pCC )E I
zy

n(pCC) + |J|
2 cos(ω(n∆t))

(3.77)

where |J| = 2∆t
(2ε+σ∆t)(ωµ0)∆x∆y is the discretized source amplitude. (Here we assume ~rs is

located at PCC . If ~rs is not exactly located at a grid node, the source term in (3.77) is

divided into weighted fragments and assigned to the four nodes closest to vector ~rs.)

In a time-harmonic imaging system, the fields required for the microwave imaging

algorithm are typically the steady-state amplitude and phase distributions, i.e. the pha-

sor or frequency domain solution. Therefore, an amplitude and phase extraction pro-

cess needs to be performed to the time-varying fields provided by the update scheme

(3.74). In order to obtain the steady-state field distribution, the time marching-on pro-

cess needs to run sufficiently long to allow the reflections from various objects to prop-

agate through the domain. Fortunately, due to the lossiness of the background medium

used in our microwave imaging system, the time for the wave to propagate from one

side to the other and back is typically sufficient to allow the field to reach steady-state.

At steady-state, all field components at all locations oscillate sinusoidally. One way

to extract the amplitude and initial phase of the sine curve is to record the values for a

period and perform fast Fourier transform (FFT). However, Oğuz and Gürel introduced

a much faster and more convenient two-point extraction scheme [150]. Assuming the

field values at two consecutive time steps, time steps n and n + 1, are recorded and can

be expressed as
f (n) = A sin(n∆t + φ0)
f (n+1) = A sin(n∆t + ∆t + φ0)

(3.78)



3.6. 2D FDTD forward field solution coupled with 2D parameter reconstruction111

the amplitude A and the initial phase φ0 can be analytically solved for by

A = csc(∆t)
√

(sin(∆t) f (n+1))2
+

(cos(∆t) f (n+1) − f (n))2

φ0 = tan−1
(

cot(∆t) − f (n)

f (n+1) csc(∆t)
)

− n∆t
(3.79)

where sin(∆t),cos(∆t),csc(∆t) and cot(∆t) can be pre-computed. This algorithm only

requires a record of the field value from the previous time step and the computational

expense arises primarily from the evaluation of the tan−1 and the square root which are

not significant compared with the expenses for the time update.

Gürel and Oğuz also found that applying a low-pass filter [70] to the source (3.76)

reduces the steady-state numerical noise. The filtered current source can be expressed

as

~Jz(t,~r) = w(t)J0 cos(ωt)δ(~r − ~rs) (3.80)

where

w(t) =







































0.5 − 0.5 cos(ωt/τ) 0 ≤ x ≤ τ (Hamming)
0.54 − 0.46 cos(ωt/τ) 0 ≤ x ≤ τ (Hanning)
0.42 − 0.5 cos(ωt/τ) + 0.08 cos(ωt/τ) 0 ≤ x ≤ τ (Blackman)
1 x > τ

(3.81)

is the filter function where τ is the length of the filter. The Hamming window filter is

selected because of the improved performance demonstrated in [70].

Stability and dispersion error

The FDTD update equations in (3.60) or (3.74) use an explicit leap-frog time-stepping

scheme. This scheme is conditionally stable when the spatial and temporal step sizes
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satisfy the Courant-Friedrichs-Lewy (CFL) stability condition [188]:

∆t ≤ 1

cmax

√

1
∆x2 +

1
∆y2

(3.82)

where cmax is the maximum wave speed throughout the computational domain. The

CFL number (CFLN) is defined by

CFLN = cmax∆t

√

1
∆x2 +

1
∆y2 (3.83)

which is a number smaller than 1. On uniform grids where ∆x = ∆y = ∆, (3.82)

requires ∆t ≤ ∆√
2cmax

. If inhomogeneities are present in the computational domain, cmax

is determined utilizing the minimum permittivity and conductivity values by

cmax =
ω

=m(k)min
(3.84)

where k is defined in (3.8).

The alternative-direction-implicit (ADI) FDTD method [209, 140] is uncondition-

ally stable and is used in both 2D and 3D reconstructions where it can operate beyond

the CFL limit. This ADI approach is introduced in Section 5.1.7 to accommodate addi-

tional optimizations in the forward field computation.

The numerical dispersion in the FDTD method refers to the phenomena that the

wave propagates with different wave speeds along different directions on the FDTD

grid. In [188], Taflove demonstrated that the numerical dispersion at different angle, θ,

is related to the spatial and temporal step sizes by

(

1
c∆t sin ω∆t

2

)2

=

(

1
∆x sin |kθ| cos θ∆x

2

)2

+

(

1
∆y sin |kθ| sin θ∆y

2

)2

(3.85)
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where |kθ| is the absolute value of the wave number along the θ direction. The wave

speed along that direction is

vp = c 2π
|kθ |

(3.86)

The denser the mesh, the smaller the dispersion error. Low-dispersion FDTD meth-

ods have attracted considerable interests in the last decade. Oğuz and Gürel developed

a simple compensation scheme to reduce the dispersion error [150]. High order FDTD

methods [47, 193] also demonstrate effectiveness in reducing the dispersion error. In

Section 5.1.6, we implement a 4-th order FDTD method in the construction of 3D

FDTD method.

Accuracy of the 2D FDTD solver

In this subsection, we investigate the accuracy of the 2D FDTD method proposed in

previous subsections. The optimal values of the PML parameters, the impact of the

mesh density to dispersion error and other related issues are discussed in the context of

two benchmark problems: B1) a homogeneous lossy background medium, and B2) a

2D cylindrical lossy object within a homogeneous lossy background medium.

As demonstrated in Section 3.6.1, the GPML medium is characterized by four pa-

rameters, the number of layers NPML, and the values of smax, sexp and σmax in (3.69). For

simplicity, a GPML medium is denoted by a quadruplet in the form of (NPML, sexp, smax, σmax).

The selection of these parameters affects the accuracy and the computational expense of

this algorithm. Theoretical analysis as well as simulations were performed for lossless

cases in [62]. We have repeated the numerical analysis for the lossy cases, i.e. in-

vestigating the absorption efficiency of the GPML characterized at different parameter

settings.

Problem B1 is utilized to investigate the absorption performance of the GPML
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ABC. The working volume is a uniform rectangular grid with Nx = Ny = 100 and

∆x = ∆y = ∆. The background medium has εbk = 25 and σbk = 1.0 S/m to simulate

an 83% glycerin solution. A point current source in the form of (3.76) is located at

the center of the grid to excite cylindrical waves at 900 MHz. The spatial step size ∆

is determined by ∆ = λbk
R where R is the mesh resolution and λbk is the wavelength

in the background medium, in this case R = 20 and ∆ = 0.3 cm. The time step is

subsequently determined by letting CFLN=0.90 from (3.83). The forward solution at

t = 100∆t is computed from the update scheme (3.74) and (3.77) under a given GPML

setting. As an experimental control, a reference field distribution is computed within a

larger mesh centered at the source with Nx = Ny = 400 and the same PML configura-

tion. Since the wave front is still far away from the domain boundary in the larger mesh

case, the reference solution can be considered to be approaching the unbounded nu-

merical solution. The differences between the Ez components computed from the small

mesh solution Ez(i, j) and large mesh solution Er
z(i, j) are measured by the l1-norm of

the error defined by

eL1(NPML, sexp, smax, σmax) =
100
∑

i=1

100
∑

j=1

∣

∣

∣|Ez(i, j)| −
∣

∣

∣Er
z(i, j)

∣

∣

∣

∣

∣

∣ (3.87)

Equation (3.87) provides a 5D data array with axes along NPML, sexp, smax, σmax and

eL1. For simplicity, we computed the error norm distribution at NPML = 5, 8, 10, 12, 15

while varying the remaining three parameters over a rectangular grid (0.5 ≤ sexp ≤

7,0.5 ≤ smax ≤ 10,0.5 ≤ σmax ≤ 10 in step sizes of 0.5). The contour plots of these

error distributions are shown in Figures 3.9 (a)-(e). From all five contour plots, the

diminishing error norm with respect to increasing NPML is evident. Additionally, there

exist optimal values for each of the other three parameters for a given NPML (the con-

tour slices cut through these optimal values in Figure 3.9). The approximate optimal
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Figure 3.9: L1 reflection error for various PML layers (a) NPML = 5, (b) NPML = 8,
(c) NPML = 10, (d) NPML = 12, (e) NPML = 15. Contours are plotted along the planes
cutting through the point with minimum error.
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Table 3.4: Optimal PML parameters at various thicknesses
NPML sexp smax σmax eL1

5 4.0 9.0 1.5 0.60103233E-04
8 2.5 3.5 1.0 0.18133276E-04

10 2.0 4.0 0.5 0.73576640E-05
12 2.0 3.5 0.5 0.31877565E-05
15 2.0 3.0 0.5 0.21373473E-05

stretching coefficients at different PML layer numbers (R = 20) are listed in Table 3.4.

A second study investigated the dispersion error of the 2D FDTD scheme. The

frequency-domain solution or steady-state phasor solution for the benchmark problem

B1 can be analytically expressed using equation (3.47). In this case, we use the uniform

rectangular grid centered at the source to compute the steady-state forward field whose

amplitude and phase are extracted by the two-point scheme (3.79). The background

medium consists of the 83% glycerin solution and 12 layers of GPML cells are applied

while the stretching coordinate parameters were chosen using the optimal values in

Table 3.4. The numerical frequency domain responses Ez(i, j) are obtained over various

mesh resolutions while fixing the domain physical size. The corresponding grid sizes

at mesh resolution R = 10, 20, 30, 40 are Nx = Ny = 50, Nx = Ny = 100, Nx = Ny = 150

and Nx = Ny = 200, respectively.

The differences between the analytical and numerical solutions are illustrated in

Figures 3.10 and 3.11. From these plots, it is quite obvious that the dispersion error

is significantly reduced when the mesh resolution is increased. The root-mean-square

(RMS) amplitude (dB) and the phase (radians) differences are computed by

eamp = 20
√

1
NxNy

∑Nx
i=1

∑Ny
j=1

(

log10 |Ez(i, j)| − log10 |Ea
z (i, j)|

)2

epha =

√

1
NxNy

∑Nx
i=1

∑Ny
j=1

(

∠Ez(i, j) − ∠Ea
z (i, j)

)2
(3.88)

at the four mesh resolutions and are plotted in Figure 3.12 (a) and (b). From the RMS
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Figure 3.10: Dispersion error (dB amplitude) at various mesh densities for the bench-
mark problem B1. (a) R=10, (b) R=20, (c) R=30, (d) R=40.
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Figure 3.11: Dispersion error (phase in radians) at various mesh densities for the bench-
mark problem B1. (a) R=10, (b) R=20, (c) R=30, (d) R=40.
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error curves, the averaged amplitude difference at R = 20 is roughly 0.08 dB while that

for the phase is 0.9 degrees.
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Figure 3.12: RMS dispersion error at various mesh densities for the benchmark problem
B1 (a) amplitude, (b) phase.

The third study tested the number of time steps required to reach the steady-state.

As mentioned briefly above, if the background medium is very lossy, the time-step num-

ber to reach stead-state is much less than in lossless cases. To verify this, the benchmark

B1 configuration with the identical settings as the R = 20 case in the dispersion error

study is investigated except with the central source being replaced by a circular antenna

array as shown in Figure 3.3. The amplitudes and phases are extracted at time-steps

t = 150∆t to t = 600∆t in 50∆t increments. The L1 amplitude errors at these time steps

are normalized by the L1 amplitude error at t = 1500∆t. This normalized error curve

is plotted vs. time-step Figure 3.13. The amplitudes at the receiver directly opposite

the transmitter are computed for all time-step (Figure 3.14 (a)). From both plots, it is

reasonable to assert that 250 to 350 time steps is sufficient to reach steady-state. Recog-

nizing that the round-trip time-step number, Nr, for this mesh is 200, we can basically

use Nr plus a fixed number of extra steps to estimate the steady-state time step where
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the extra steps are used to account for the effect of the source low-pass filter in (3.80).
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Figure 3.13: Normalized L1 amplitude error at various time-steps.

Due to the oscillatory nature of the curve in Figure 3.14 (a), we devised a monotonic

decreasing metric for determining the steady-state time-step from the amplitudes at the

opposing receiver. This metric is defined as

γ =
|E|max − |E|min

|E|max
(3.89)

where |E|max and |E|min are the maximum and minimum values within a sliding window

in the amplitude sequence. The length of the window must be at least one full period

of the EM wave to avoid oscillations. The corresponding plot of γ for the amplitude

sequence in Figure 3.14 (a) is plotted in Figure 3.14 (b). In practice, we typically use

γ < 10−2 as the FDTD time-stepping stopping criterion.

For inhomogeneous problems, we used the B2 benchmark to repeat the above anal-

ysis where similar conclusions can be drawn. The plots are omitted here.
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Figure 3.14: Study of the time step number required for achieving steady-state (a) the
amplitude extracted at the opposite receiver for all time-steps, (b) values of γ for all
time steps.

Efficiency of 2D FDTD method compared with 2D FE/BE method

In this subsection, we discuss the computational efficiency of the FDTD approach

compared with the scalar method using the FE/BE hybrid in evaluating the frequency-

domain EM field solutions for tomographic imaging settings.

In order to make these comparisons, we used a uniform rectangular grid of size

Nx = Ny = N + 2NPML (NPML is the thickness of the PML absorbing boundary layer) as

the mesh for the 2D FDTD method while the corresponding circular FE mesh is located

at the center of the grid within a circular area of radius r = N/2. The meshes for both

methods are illustrated in Figure 3.15. The comparison is performed by counting the

total floating-point operation (flop) numbers [67] for both methods in producing a single

steady-state solution. For simplicity, the operations for constructing the FE matrix (A in

(3.14)), building and solving the BE matrix and those for computing the FDTD update

coefficients in (3.75) are neglected as are in the amplitude/phase extraction calculations.

For the 2D FE method, the total unknown number in the FE domain is roughly π4 N2.
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Figure 3.15: Meshes used for the efficiency comparison.
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Therefore, the size of the LHS matrix is ( π4 N2)×(π4 N2) and is sparse. The half-bandwidth

of the matrix is related to the node numbering scheme. As discussed in Section 3.4, the

incorporation of the BE equation effects the bandwidth of the FE matrix which is at least

the number of boundary nodes. In this case, the number of boundary nodes is roughly

πN which approximately equals the half-bandwidth. Utilizing the symmetry feature of

the FE matrix, a banded Cholesky factorization algorithm is used for its high efficiency

and produces a total floating-point operations count of roughly np2 + 7np + 2n [67]

(here we ignore the n square root operations needed for the factorization given that the

value of p is sufficiently large) where n is the dimension of the matrix and p is the

half-bandwidth. For the FE/BE method, n = π
4 N2 and p = πN. This produces a total

flop count of π3

4 N4 + 7π2

4 N3 + π2 N2.

For the 2D FDTD method, on the other hand, the total flop number can be repre-

sented by a two-term expression as

F = FsteadyFiter (3.90)

where Fsteady is the number of time steps to reach steady state, and F iter is the number

of operations within a single time step.

Fiter can be easily computed by counting the algebraic operations in (3.74) which is

roughly 28(N+2NPML)2. Assuming the mesh resolution is given by R, the CFL number

is given by CFLN, the wave speed in the background medium is cbk and the maximum

wave speed among all inhomogeneities is cmax, the number of time steps required to
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reach steady state can be estimated by

Fsteady =
tsteady
∆t

=
2N×∆

cbk
CFLN×∆
(
√

2cmax )

=
2
√

2N×cmax
CFLN×cbk

(3.91)

and the total flop number for the FDTD method can be written as

FFDT D = 56
√

2N(N + 2NPML)2 cmax

CFLN × cbk
(3.92)

If CFLN = 0.999 ≈ 1, equation (3.92) becomes

FFDT D = 56
√

2N(N + 2NPML)2 cmax

cbk
(3.93)

where cmax
cbk

is related to the contrast of the object to the background: if the object has

higher dielectric values than the background then cmax
cbk
= 1; if the object has lower

dielectric values than the background then cmax
cbk
≈

√

εbk
εmin

is the square root of the permit-

tivity contrast.

Assuming the permittivity contrast in a sample benchmark problem is εbk
εmin
= 10

(which is reasonably high for typical microwave imaging cases) and NPML = 8, the total

flop number curve for the FDTD method is plotted as a function of mesh size (N) in

Figure 3.16 along with that for the FE/BE method. From the plot, the advantage of using

FDTD method is significant because the highest order term in FFDT D is N3 while that

for FFE/BE is N4. For most cases, the FDTD method (with GPML ABC) outperforms

the hybrid scalar technique especially when mesh grows bigger. It should be noted that

for smaller problems, the advantage is reduced. For the current FE/BE algorithm in the

breast imaging reconstructions, the number of nodes on the circumference is 216 which
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would make N = 72 for this analysis. For N = 72, NPML = 8 and εbk
εmin
= 10, the flop

count for the FE/BE method is only 54% higher than that for the FDTD technique.

Note that this comparison does not fully reflect the performance differences be-

tween the FE/BE and FDTD forward solvers in the actual image reconstructions be-

cause the FE/BE method only needs to decompose the LHS matrix once for multiple-

source forward field calculations followed by multiple back-substitutions. The cost for

the back-substitutions is relatively small. On the other hand, the flop counts for the

FDTD method also vary because we used PML update equation (3.74) throughout the

domain for simplicity. If we write separate loops for PML slabs and working volume,

the total flop count can be reduced roughly by half. In addition, the FDTD for the

cylindrical coordinate system is also helpful in enhancing its performance. The actual

computation times for both methods can be found in the result section of this chapter.
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Figure 3.16: Comparison of the total floating-point operation numbers between FE/BE
and FDTD methods for different mesh sizes.

Summary for the 2D FDTD forward method

We have investigated the implementation of a 2D FDTD method with GPML absorb-

ing boundary condition for modelling the forward fields in a lossy medium. The up-
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date scheme, source implementation, stability and numerical dispersion were discussed.

With simple benchmark problems, the accuracy and efficiency of the proposed method

were analyzed and compared to the FE method to demonstrate the advantages.

3.6.2 2D FDTD forward method coupled with 2D reconstruction

Similar to the FE/BE hybrid method, the 2D FDTD method provides the frequency do-

main forward field response for each transmitter and the measurement data are extracted

at receivers to facilitate the reconstruction of the dielectric properties. Considering the

tomographic configuration of the measurement system, the dual-mesh settings for the

2D FDTD field solution driving 2D reconstruction algorithm (2DsFDTD/2D) is shown

in Figure 3.17 from which the rectangular uniform FDTD grid, the circular antenna

array and the concentric reconstruction mesh can be identified. Due to the superior

performance of the GPML medium, the source antennas can be placed very close to the

boundary (as close as 5 cells in general).

Generalized PML

Dipole antennas

Reconstruction Mesh

Forward FDTD grid

Figure 3.17: Dual-mesh configuration for 2D FDTD (GPML) forward solver and
Gauss-Newton reconstruction.

The overall structure of the 2DsFDTD/2D reconstruction is simply an extension of the

general diagram Figure 3.1 by replacing the forward solver by the 2D FDTD method
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formulated above where the steps for forward field evaluation are illustrated in Figure

3.18. Besides the alteration in the forward field evaluation, the method for building the

Jacobian matrix is also improved significantly. The new algorithm is referred as the

nodal adjoint method which will be discussed in details in Section 5.1.2 in the context

of the 3D vector reconstruction.

Figure 3.18: Flow chart of the forward field evaluation in 2DsFDTD/2D reconstructions.
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3.7 Results

In this section, we present several simulation, phantom and in vivo animal and pa-

tient data reconstructions to demonstrate the effectiveness of the 2D algorithms. These

reconstructions are primarily computed by the 2DsFDTD/2D while solutions from the

2Ds/2D reconstructions are provided for comparison. The dual-mesh for the 2DsFDTD/2D

reconstruction is shown in Figure 3.17. The diameter of the antenna array is 15.1 cm

which contains 16 monopole antennas modelled as time-harmonic point sources. The

forward FDTD mesh is larger than the antenna array and typically 12 layers of GPML

medium are incorporated to surround the forward domain to absorb outgoing waves.

The stretching coordinate coefficients of the GPML use values provided in Table 3.4.

The background medium consisted of an 83% glycerin solution (εr = 25.7, σ = 0.87

S/m). The reconstruction mesh was placed concentrically within the antenna array with

diameter d = 15.2 cm. The circular reconstruction mesh (r = 6.5 cm) is comprised of

473 nodes with 872 triangular elements. Linear Lagrangian basis function were used to

model the distribution of the inhomogeneity inside the mesh. All reconstructions were

initialized from the homogeneous background medium and were allowed to run for 20

iterations. The Tikhonov regularization with the empirical method for selecting regular-

ization parameter, λ, was used in conjunction with the spatial filter technique (Section

3.2.3) (the smoothing coefficient α is set to 0.1 for all simulation reconstructions and

0.3 for phantom, animal and patient data reconstructions).

In all simulations, the measurement data was obtained by using a high-resolution

FDTD grid of R = 40 with an operating frequency of 900 MHz. Two types of er-

rors were computed to assess the convergence of the reconstruction. The relative error
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(normalized misfit error) at each iteration i is defined by

e(i) =
||E(i)

z − Emeas
z ||22

||E(1)
z − Emeas

z ||22
(3.94)

This relative error measures the appropriateness of the solution without requiring ad-

ditional information. Since the true values of the dielectric property distribution were

known in the simulations, the normalized RMS error between the reconstructed prop-

erties and their true values can be defined by

eRMS (i) =
||θ(i) − θtrue ||22
||θbk − θtrue||22

(3.95)

where θ represents either the vector of the unknown permittivity or conductivity. θtrue is

the true value of the selected property and θbk is the vector of the background properties

which is the initial guess for all the reconstructions.

3.7.1 Simulations

The first simulation experiment utilized a centered cylindrical target with an offset in-

clusion. The cylinder had permittivity εr = 9 and conductivity σ = 0.3 S/m with a

diameter d = 8 cm to simulate a fatty breast. The 1.8 cm diameter cylindrical inclu-

sion had εr = 35 and σ = 1.2 S/m to simulate fibroglandular tissue and was located

at (x = −2 cm,y = −2 cm). The 83% glycerin solution was used as the background

medium. The simulated measurement data was utilized by the dual-mesh 2D recon-

struction algorithm along with a homogeneous background initial guess. The recon-

structed permittivity and conductivity images for the 20-th iteration is shown in Figure

3.19. A plot of the normalized misfit error vs. the iteration number is shown in Figure

3.20. After 6 iterations, the boundaries and properties of the object and inclusion are
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readily apparent and the normalized misfit error decreased to 0.07.
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Figure 3.19: Reconstructed dielectric profiles of the breast-like object after 20 iterations
(a) relative permittivity, (b) conductivity.
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Figure 3.20: (a) Relative error and (b) normalized RMS error plots for the breast-like
object reconstruction.

The second simulation was designed to investigate the image resolution of the al-

gorithm. Six objects with various sizes were placed inside the imaging zone. Their

dimensions and dielectric values are noted in Table 3.5. Once again, the reconstruction

started from the homogeneous background values and the images at the 20-th itera-

tion are shown in Figure 3.21. The associated relative field and RMS errors curves are

plotted in Figure 3.22.
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Table 3.5: Object properties for simulation with varied sizes.
shape center (cm) size * (cm) εr σ (S/m)

object 1 square (-2,2) 4 10 0.3
object 2 square (2,-2) 1 10 0.3
object 3 circle (-3,-3) 2 10 0.3
object 4 circle (-1,-1) 1.6 10 0.3
object 5 circle (1,1) 1.2 10 0.3
object 6 circle (3,3) 0.8 10 0.3
* edge lengths for square objects and diameters for circular objects

In the reconstructed images, all six objects were successfully recovered with the

correct positions and sizes. Artifacts are noticeable within the background medium.

However, the variations due to these artifacts are still less than the recovered properties

of the smallest object, which is 0.8 cm in diameter. This demonstrates that the recon-

struction algorithm is able to recover objects smaller than the half wavelength resolution

limit (3.3 cm in this case) in a complex setting with the iterative algorithm. It should

also be pointed out that due to the smoothing effects of regularization and spatial filter

technique, the recovered object values appear to be higher than their true values. This

is more noticeable for the smaller objects. It is interesting to note that the relative field

error decreases monotonically and seems to have achieved steady-state by 7-th itera-

tion. However, it appears that the permittivity values reach their minimum error very

quickly with the conductivity error catching up quite slowly indicating a possible bias

towards the permittivity recovery.
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Figure 3.21: Reconstructed dielectric profiles of the size simulation.
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Table 3.6: Object properties for simulation with varied contrasts.
center (cm) εr σ (S/m)

object 1 (-3,-3) 10 0.1
object 2 (-1,-1) 15 0.2
object 3 (1,1) 20 0.4
object 4 (3,3) 25 0.6
object 5 (-3,3) 30 1.0
object 6 (-1,1) 40 1.2
object 7 (1,-1) 50 1.4
object 8 (3,-3) 60 1.6

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

iteration number

re
la

tiv
e 

er
ro

r

(a)

0 5 10 15 20
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

iteration number

no
rm

al
ize

d 
RM

S 
er

ro
r

permittivity
conductivity

(b)

Figure 3.22: (a) Relative error and (b) normalized RMS error histograms for the recon-
struction of objects with varied sizes.

The third simulation investigated object contrast. Eight circular objects with iden-

tical diameter r = 1.6 cm filled with different materials were studied with their values

summarized in Table 3.6. Using the same strategy as applied in the previous recon-

structions, the recovered dielectric profiles are shown in Figure 3.23 after 20 iterations.

The relative and RMS error curves for this simulation are shown in Figure 3.24. From

the reconstructed images, it is difficult to distinguish the top two objects from the back-

ground because they have the smallest contrast. The remainder are all readily detected.

Again, it is interesting that the permittivity RMS error curve converges faster than its

conductivity counterpart further suggesting some bias.
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Figure 3.23: Reconstructed dielectric profiles for the contrast simulation.
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Figure 3.24: (a) Relative error and (b) normalized RMS error histograms for the recon-
struction of objects with varied contrasts.
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The fourth simulation was designed to assess the cross-talk between the permittiv-

ity and the conductivity during the reconstruction process. Following the settings from

the second simulation, six objects were divided into two groups with the first group

appearing in the permittivity and the second group appearing in the conductivity im-

age. After the 20-th iteration, the permittivity and conductivity images are successfully

reconstructed with negligible crosstalk between images as shown in Figure 3.25. The

associated relative and RMS error curves are plotted in Figure 3.26. Comparing the

RMS error curve with the one in Figure 3.22, the error for the conductivity was re-

duced significantly. This indicates that the convergence of the algorithm might also be

effected by the complexities of the true distribution.
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Figure 3.25: Reconstructed dielectric profiles for assessing the cross-talk between per-
mittivity and conductivity.

In all simulations, the 2D FDTD forward/2D reconstruction algorithm correctly

recovered the locations and property values of the targets except for minor distortions

and smoothing due to the nature of the algorithm and limited amount of measurement

data. The reconstruction time for a single iteration consisted of roughly 4 seconds (R =

20) for forward solution modelling and 5 seconds for computing the update. A parallel

version of this reconstruction code was also implemented which reduced the forward

solution modelling time by a factor of 3.5 when 4 CPU’s were used simultaneously.
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Figure 3.26: (a) Relative error and (b) normalized RMS error histograms for the cross-
talk simulation.

3.7.2 Phantom experiments

Two groups of phantoms were studied with the 2DsFDTD/2D reconstruction algorithm

to demonstrate the viability of this method in realistic imaging settings. The first study

involved two solid cylindrical phantoms which both had low dielectric properties (εr =

5 and σ = 0.3 S/m) to simulate bone/fat tissue while the background medium was an

83% glycerin solution (εr = 22.8, σ = 0.89 S/m). Measurements were acquired at

a number of frequencies which only the 1100 MHz measurement data was used for

reconstructing the dielectric profiles. The dielectric images after 20 iterations were

shown in Figure 3.27. The actual positions and sizes of the targets are drawn over the

recovered object in the reconstructed images. Figure 3.28 shows the corresponding

relative error curve.

The locations, sizes and shapes of the two cylinder phantoms were correctly recon-

structed in the permittivity image. The location of the small cylinders on the conduc-

tivity image is slightly shifted toward the boundary. The distortion and artifacts on both

images can probably be partially explained by the mismatch between the numerical for-
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Figure 3.27: Reconstructed bone/fat phantom dielectric images.
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Figure 3.28: Relative error histogram for the two-cylinder phantom reconstruction.

ward model and actual illumination configuration (In terms of mismatch, this includes

the fact that the actual fields scatter into 3D space while those in the model only scatter

into 2D space).

In the second experiment, we utilized a 10 cm liquid cylinder to simulate a breast

and two cylindrical inclusions to mimic glandular and tumor tissue, respectively. A

photograph of this experiment is shown in Figure 3.29. The inclusion for mimicking

glandular tissue was 1.8 cm in diameter with dielectric properties of εr = 32.3 and

σ = 1.3 S/m while those for the 2.1 cm diameter tumor phantom had εr = 53.5/σ =

1.12 S/m. The large phantom was filled with different glycerin solutions such that the

properties were close to those for a range of breast density classifications: extremely

dense (εr = 22.2,σ = 1.06 S/m), heterogeneously dense (εr = 18.3,σ = 0.95 S/m),

scattered (εr = 14.4,σ = 0.77 S/m) and fatty (εr = 9.5,σ = 0.44 S/m), respectively.
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Figure 3.29: Photograph of the phantom experiment with various contrasts. The illu-
mination tank, antenna array, large cylindrical object and two tubes for inclusions are
shown.

For all four cases, images of the phantoms were reconstructed at 900 MHz by the 2D

algorithm and are shown in Figure 3.30 (a)-(d). For comparison, we also reconstructed

the images (Figure 3.31) using the 2D scalar technique described in Section 3.4.

The reconstructed images accurately captured the locations and values of the object

and inclusions. The recovery of the tumor becomes more accurate with a decrease in

contrast between the breast and background. For the extremely dense case, the outline

of the breast is not visible because the contrast between the background and phantom

are negligible in this case. These images are generally consistant with the results re-

constructed from the 2Ds/2D technique. Certain amount of artifacts can be observed

around the image boundaries which may be related to signal noise and forward model

mismatch issues.

3.7.3 In vivo animal measurement reconstructions

A series of in vivo animal experiments utilizing piglets were conducted to demonstrate

the thermal monitoring capability of our microwave imaging system. These experi-
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Figure 3.30: Reconstructed dielectric profiles for four 10 cm diameter phantoms with
a range of contrasts mimicking (a) fatty, (b) scattered, (c) heterogeneously dense and
(d) extremely dense breasts, respectively. In each there is a 2.1cm diameter inclusion to
the lower left simulating a tumor and a second 1.8 cm diameter inclusion to the lower
right simulating glandular tissue.
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Figure 3.31: Reconstructed dielectric profiles for four 10 cm diameter phantoms with a
range of contrasts mimicking (a) fatty, (b) scattered, (c) heterogeneously dense and (d)
extremely dense breasts, respectively, with the FE/BE forward field technique.

ments were performed with the first generation system (Chapter 1) during years 2001

and 2002. In the experiment, a plastic tube was surgically inserted through the abdomen

of a living piglet. The piglet as well as the tubings was submerged into the illumination

tank and placed within the center of the circular antenna array. During the experiment,

the tube was supplied with saline at different temperatures and the measurement of the

scattered microwave field was collected accordingly. CT scans were performed before

and after the data acquisition to assess the position shift during the experiment. A pho-

tograph of the experimental set up is shown in Figure 3.32. A sample CT image is

shown in Figure 3.33 to demonstrate the structure of the target and its relative position

to the antenna array.

The temperature of the saline inside the tube was raised from 33◦C to 45◦C in 3◦C

increments. Afterwards, the temperature was decreased back to 33◦C with the same
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Figure 3.32: Photograph of the system settings in the piglet experiment [123].

Figure 3.33: Axial view CT image of the piglet abdomen as well as the microwave
antenna array.
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step size. Dielectric property profiles at different temperature points were reconstructed

with our 2DsFDTD/2D algorithm and are shown in Figure 3.34 (note that the temperature

points during the rising phase have a “u” suffix, while those in the decreasing phase have

a “d” suffix). The images were also reconstructed for the case with an empty tube in the

room temperature (denoted by “air” in the figure). To assess the correlation between

the temperature and the dielectric properties, we used the images for the case “33u” as

the reference which was subtracted from the rest of the images. The difference images

in the conductivity part of the dielectric properties are shown in Figure 3.35.

A few observations can be made from the absolute images (Figure 3.34): 1) the

contours of the pig abdomen in these images agrees well with those in the CT images

(Figure 3.33), 2) the saline tube can be observed in both the permittivity and conductiv-

ity images and agrees with the location in the CT image, 3) low dielectric value zones

can be seen at the top and the center bottom of the pig abdomen in the permittivity

images where the former agrees with the locations of the fatty tissue and air bubbles

inside the abdomen and the latter is consistant with the location of the pig spine, 3) the

location of the tube is highlighted in the “air” case. From the conductivity difference

images, the linear relationship between the conductivity and the temperature can be

readily seen (the conductivity difference in the tube area reaches the maximum when

the temperature difference is maximum). This experiment not only demonstrates the

capability of imaging the anatomy of a living animal, but also provides rationale for

utilizing microwave imaging as a means of thermal monitoring. More details about this

experiment can be found in [123].
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Figure 3.34: Reconstructed images at different tube saline temperatures during the ris-
ing phase: (a) 33◦C, (b) 36◦C, (c) 39◦C, (d) 42◦C, (e) 45◦C, and the decreasing phase:
(f) 42◦C, (g) 39◦C, (h) 36◦C, (i) 33◦C, (j) room temperature (tube was filled with air).
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Figure 3.35: Difference images of the conductivity between the “33u” case and (a) air,
(b) 36u, (c) 39u, (d) 42u, (e) 45, (f) 42d, (g) 39d, (h) 36d, (i) 33d.

3.7.4 Patient data reconstructions

With our clinical imaging system, we have performed microwave breast exams for over

200 women. In these patient exams, the planar antenna array collected measurement

data at 7 vertical positions with either a 0.5 cm or 1 cm vertical separation where po-

sition 1 corresponded to the plane closest to the patient chestwall and position 7 refers

to the plane closest to the nipple. The imaging plane is parallel to the anatomical

coronal plane of the patient. This process is performed for both breasts. The whole

exam typically takes roughly 16 minutes. We selected a patient with a known tumor to

demonstrate the performance of the 2D algorithm.

The patient (patient ID: 1082) had two tumors in her left breast: the first was close

to the chestwall, and the second was towards the nipple. The locations and sizes of

these two tumors are indicated in Figure 3.36. The reconstructed images from the data
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measured at 1300 MHz are shown in Figure 3.37.

Figure 3.36: Locations of the tumors on the left breast of patient 1082. The largest circle
corresponds to the posterior region (closest to chestwall), the smallest corresponds to
the anterior zone and the center one refers to the mid breast zone.

From these images, the contours of the breast at different slices are readily dis-

tinguishable. The glandular tissue on both sides of the breast can also be observed

predominantly in the permittivity images of both breasts. On the “p1” slice of the left

breast conductivity images, the enlarged glandular area with elevated properties com-

pared with the contralateral breast indicates the existence of the tumor. The circular

indentation (i.e. elevated property value) at 3 o’clock on the conductivity image (p1)

agrees well with the clinical information.

Another tumor patient example is shown in Chapter 10 in the discussion of the

image reconstructions of strong scattering objects such as a large tumor case utilizing

unwrapped phase information.

From the recovered images, the proposed 2D algorithm demonstrated good corre-

lation with the results of the previous algorithm in terms of accurate recovery of the

phantom and inclusion shapes, locations and properties, respectively. The computa-

tional time for the FDTD-based reconstruction was roughly half as long as the FE/BE

reconstruction while the FDTD grid size had roughly twice as many nodes as the FE/BE

approach. The advantage of using the FDTD method as the forward modelling tech-

nique is significant for large N from these experiments in terms of computational effi-
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Figure 3.37: Reconstructed image slices for patient 1082: (a) left breast, (b) right breast.
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ciency.

3.8 Conclusions

A number of important issues have been discussed in this chapter. We first outlined

the overall structure of an iterative image reconstruction scheme for tomographic mi-

crowave imaging. The concept of the dual-mesh was mathematically defined with

respect to the image reconstruction. Two 2D reconstruction algorithms were pro-

posed including the FE/BE scalar forward method driving the 2D reconstruction al-

gorithm (2Ds/2D) and the 2D FDTD forward method driving the 2D reconstruction

(2DsFDTD/2D). The forward field modelling in both 2D algorithms were discussed in-

cluding topics such as their formulations, radiation or absorbing boundary conditions,

accuracy and efficiency. From the comparison of these two algorithms, the 2D FDTD

method demonstrated promising advantages in modelling the steady-state field in a

lossy media compared with the FE/BE counterpart. Numerical simulations, phantom

and in vivo experiment cases were presented to assess the accuracy and efficiency of

these algorithms for image reconstruction in real-world settings. For all cases, the

targets were successfully reconstructed with the 2DsFDTD/2D algorithm and the conver-

gence was assessed in terms of the relative field error and the RMS error (for simula-

tions).

In conclusion, we have demonstrated significant algorithmic flexibilities utilizing

the dual-mesh based algorithm in terms of accommodating various forms of the for-

ward field modelling method and the parameter representations in a single reconstruc-

tion. These flexibilities play an important role in the 3D image reconstruction algo-

rithms discussed in the following two chapters. Due to the straightforward formulation,
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highly efficient absorbing boundary condition and overall computational advantages,

the 2D FDTD method is quite attractive for the forward field modelling role. The high

efficiency of the 2D FDTD method in conjunction with state-of-the-art computer power

make it possible for quasi-real-time image reconstructions in medical applications. In

Chapter 5, this algorithm is expanded to 3D with various optimizations to further im-

prove efficiency. These 3D optimizations can also be applied to the 2D algorithm.





Chapter 4

3D scalar field driving 2D

reconstruction algorithm

In this chapter, an efficient Gauss-Newton iterative image reconstruction technique uti-

lizing a three-dimensional field solution coupled to a two-dimensional parameter esti-

mation scheme (denoted as 3Ds/2D) is presented. As an intermediate step towards 3D

microwave imaging and a direct extension of the 2D algorithms discussed in Chapter 3,

the 3Ds/2D algorithm employs a 3D scalar model for the forward field computation un-

der reasonable approximations. This simplified model together with the supplementary

iterative block linear equation solver demonstrates remarkable efficiency for modelling

3D wave propagation and limited reduction in accuracy compared with the full 3D

vector field solutions. In addition, the resultant image recovery has been restricted to

a 2D plane and the interconnections between the forward and reconstruction problem

are once again organized with respect to the dual-mesh scheme discussed in Chapter

3.3. As demonstrated in the phantom reconstructions in Section 3.7.1, using 2D meth-

ods to reconstruct a slice of a 3D object can cause distortions in the image due to the

mismatch in the forward model. With the implementation of the 3Ds/2D algorithm,

149
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these 3D artifacts are perceivably reduced when compared with results from entirely

two-dimensional inversions (2D/2D). Important advances in terms of improving algo-

rithmic efficiency include the use of a block solver for computing the field solutions

and application of the dual-mesh adjoint approach for assembling the Jacobian matrix.

Results obtained from synthetic measurement data show that the new 3Ds/2D algo-

rithm consistently outperforms its 2D/2D counterpart in terms of reducing the effective

imaging slice thickness in both permittivity and conductivity images over a range of

inclusion sizes and background medium contrasts.

The next section provides a summary of the underlying methodology. This is fol-

lowed by the results (Section 4.2), which reports and analyzes images recovered with

the algorithm for various phantom experiments that are representative of cases previ-

ously studied with the 2D algorithms. Metrics previously developed in the 2D studies

are applied to the output of these 3D reconstructions to assess potential improvements.

The results and innovations of the 3Ds/2D algorithm are summarized in the concluding

section of the chapter (Section 4.3).

4.1 Theory and techniques

For biological tissues, the governing equation of the electric field propagation in the

frequency domain is generally expressed as a vector equation, i.e. (3.13). To correctly

formulate the forward equation, we need to reconsider the three basic assumptions used

in the 2D algorithms, i.e. 2D dielectric property distribution, the line source and TM

wave propagation (Section 3.4). First, the assumption of 2D dielectric profiles is still

valid since the reconstruction in 3Ds/2D algorithm is still modelled by 2D spatial bases.

Second, in 3D space, it is no longer appropriate to require the source to have infinite
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length, instead, a finite length source or point source is desired. The associated elec-

tric field distribution of a finite-length source is a 3D vector field where the E x and

Ey components are not necessarily zero. This jeopardizes the validity of the second

and the third assumptions above and creates difficulties in obtaining the forward so-

lution since (3.13) cannot be decoupled into scalar equations along each spatial axis.

Fortunately, the comparison between the vector form forward solution with the scalar

solution indicates that the electric field in the far field of the antenna is approximately

a TM wave where the ~E field in the x − y plane is negligible compared with its z com-

ponent. As a result, approximations are introduced by imposing the TM assumption

in the 2D forward model. The impact of this approximation on the forward model and

image reconstruction accuracy is discussed in the results section of this chapter.

As a result of above approximations, the frequency domain equation involving only

the Ez component is once again applied similarly to the 2D case except that this equa-

tion now needs to be solved in the 3D space. A dual-mesh pair is constructed where

the forward mesh is a cylindrical mesh in the 3D space and the reconstruction mesh is a

planar circular mesh as depicted in Figure 4.1. The forward mesh extends radially be-

yond the circular array of driving antennas (oriented vertically). The top and bottom of

the cylindrical mesh are well away from the antenna cross-sectional plane to minimize

interactions with finite boundaries resulting from mesh truncation (Figure 4.1). Radi-

ation boundary conditions (RBC’s) are applied to the exterior surfaces of the forward

mesh to accurately represent unbounded field propagation while facilitating truncation

of the problem to an acceptable size (Section 4.1.1).
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Monopole Antennas 2D Reconstruction Mesh

3D Forward Mesh

Radiation

Boundary

Condition

Figure 4.1: Schematic of the 3Ds/2D imaging problem – the 2D reconstruction area
is centered within an array of 16 monopole antennas with the 3D cylindrical volume
extending radially beyond the antennas and a substantial distance above and below the
2D imaging plane.

4.1.1 Forward problem

3D scalar model

The three-dimensional finite element technique was chosen to solve the frequency do-

main equation (3.13) due to its appealing features such as the sparseness of the associ-

ated matrix system and the capability of modelling curved boundaries. In the 3Ds/2D

algorithm, the forward domain Ω is a 3D volume and the basis/weighting functions

are defined over 3D elements instead of planar triangles. Utilizing linear basis func-

tions, the weak form system of equations can be constructed with the implementation

of Galerkin method, similarly to the 2D scalar cases, to produce

〈∇Ez(~r),∇φ`
〉 −

〈

k2Ez(~r), φ`
〉

−
∮

∂Ω

∇φ`Ez(~r) · n̂ds

= − jwµ0
〈Jz(~r), φ`

〉 (4.1)

where 〈·, ·〉 is the integration of the product of the two terms over the entire forward

volume, ∂Ω is the surface of that volume, φ` is the weighting function, n̂ is the unit
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normal vector to the volume surface. By satisfying (4.1) for the weighting functions

associated with all nodes in the 3D FE mesh, a system of N equations with N unknowns

(the electric field values at all nodes) can be constructed and organized in matrix form

AE = b (4.2)

where the (i,`)-th element of A is

ai,` = 〈∇φi,∇φ`〉 −
〈

k2φi, φ`
〉

(4.3)

and the `-th element of b is

b` = − jωµ0
〈Jz

(

~r) , φ`
〉

(4.4)

Note that the contribution from the surface integral in (4.1) is discussed in the fol-

lowing section. It is also important to note that A contains all of the information per-

taining to the electrical property distribution within the modelled zone while b contains

all of the source antenna data.

Radiation boundary conditions

The modelled domain must be truncated at a finite distance to limit the problem size.

One possible choice was to use the 3D extension of the boundary element method sim-

ilarly to the 2D algorithm in the last chapter. A surface integration would need to be

evaluated and the BE matrix equation constructed similar to (3.49). Fortunately, due

to the highly lossy nature of the coupling medium, an approximate radiation boundary

condition, the first order Bayliss-Turkel RBC [6, 5, 162, 92], is implemented introduc-
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ing only moderate errors while significantly simplifying the evaluation. This RBC is

derived from the Sommerfeld radiation condition [182] described by

lim
r→∞

r
(

∂Ez(r)
∂r − jkEz(r)

)

= 0 (4.5)

evaluated on an infinitely large 3D spherical surface S r with radius r where the sources

and scatterers are assumed to be at the center of the sphere. The approximated asymp-

totic expansion of the scalar function Ez in spherical coordinates on S r is given by [6,

92]

Ez(r) = exp( jkr)
√

kρ

∞
∑

i=0
fi(θ) (kr)−i (4.6)

where fi(θ) is the angular projection. The gradient of Ez on the surface S r can be

approximated by the i-th order Bayliss-Turkel RBC [6, 5, 92] expressed as

∇Ez(r) =
(

αi(r)Ez(r) + βi(r)∂Ez(r)
∂2θ

)

r̂ (4.7)

where αi(r) and β(r) are coefficients defined by

α1(r) = jk − 1
2r

β1(r) = 0
(4.8)

for the first order approximation (i = 1) and by

α2(r) =
jk− 3

2r+
3 j

8kr2

1+ j
kr

β2(r) =
j

2kr2

1+ j
kr

(4.9)

for the second order approximation (i = 2).

Choosing the first order Bayliss-Turkel RBC and substituting (4.8) into (4.1), we

eliminate the unknown gradient on the boundary and produce a continuous equation of
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the unknown field which can be easily discretized and solved with linear matrix solvers.

Since the forward mesh boundary ∂Ω is not a sphere, the surface integration involves

the vector product of radial vector r̂ and the normal vector of the surface patch n̂ as

〈∇Ez(~r),∇φ`
〉 −

〈

k2Ez(~r), φ`
〉

−
∮

∂Ω

(

jkEz(~r) − Ez(~r)
2r

)

φ`r̂ · n̂ds

= − jwµ0
〈Jz(~r), φ`

〉 (4.10)

r̂
n̂

A Boundary Element

Source

(a)

(a)

r̂

A Boundary Element

Sources

eff

(b)

(b)

Figure 4.2: Schematic of a) the vector from a portion of a single line source to a bound-
ary element on the cylindrical volume, and b) the vectors from multiple antennas si-
multaneously projected to produce an effective r̂ vector at the boundary element.

Because the antennas are finite length, the direction of r̂ at ∂Ω changes as a function

of the section of the antenna that is referenced. To account for this nonlinear variation

in the direction of r̂, its direction is integrated along the antenna length to produce an

effective r̂.

In our geometric configuration, the sources are not at the center of the volume. This

produces an immediate impact on the surface integral term in (4.10). If r̂ is taken as the
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unit vector from each individual source corresponding to Jz(~r) on the right-hand-side

of (4.10), matrix A will vary for each transmitter. This has significant computational

consequences in that (4.2) will then have to be solved independently for each source.

However, an alternative approach is to construct the r̂ ·dŝ product utilizing the weighted

sum of r̂’s from all source antennas in the array (even though only one is active at a

time) (Figure 4.2 (b)). In this way, the contribution from the surface integral in (4.10)

becomes independent of the active antenna, making A identical for all sources. Table

4.1 shows a summary of the computed forward electric field magnitude and phase dif-

ferences at 500 and 900 MHz for a single transmitter averaged over the associated 15

receiver antennas for the two different BC configurations along with the analytical so-

lution. The row for case A of the table contains the differences in a homogeneous saline

solution between the numerical case with r̂ referenced just to the transmitter (ANT1)

and the analytical solution The row for case B lists the differences between the solu-

tions computed by the average of the 16 antennas (ANT16) and the analytical solution.

The rows for case C list the differences between the numerical models utilizing ANT1

and ANT16 BC’s for the homogeneous and inhomogeneous cases. In general, the dif-

ferences between the ANT1 and ANT16 cases were less than the differences between

the ANT1 and the exact analytical solutions except for the phase at 500 MHz. For both

RBC’s, the differences in both magnitude and phase compared with the analytical solu-

tion are generally acceptable considering the mesh used in this comparison is relatively

coarse (about 8 nodes per wavelength at 900 MHz). Essentially this shows that any

errors introduced by moving from the exact analytical solution to that of the ANT1 BC

are more significant than that introduced by replacing the ANT1 BC’s with the ANT16

BC’s. To verify this in a more complicated situation, we computed the same ANT1

and ANT16 differences for the case where there was a high contrast, breast-like object
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Table 4.1: Average 500 and 900 MHz forward solution magnitude (dB) and phase
(degrees) differences for signals computed at the 15 associated receivers for a single
transmitter.

A. ANT1-Analytical 500M 900M
B. ANT16-Analytical Mag Phase Mag Phase
C. ANT1-ANT16 (dB) (deg) (dB) (deg)

Homogeneous A. 0.56 2.4 1.1 25.7
B. 0.098 3.7 1.3 21.5
C. 0.52 5.5 0.28 4.2

Breast-Like Target C. 0.46 5.4 0.28 4.9
1. Homogeneous saline solution:

A. 1 antenna BC’s versus the analytical solution, and
B. the averaged 16 antenna BC’s versus the analytical solution, and
C. 1 antenna BC’s versus the averaged 16 antenna BC’s;

2. Breast target in saline solution:
C. 1 antenna BC’s versus the averaged 16 antenna BC’s.

with a tumor inclusion (see Section 4.2.2) suspended in the saline solution. In general,

the differences were roughly unchanged for the homogeneous case. Implementation of

this concept of an effective r̂ · n̂ contribution is essential for facilitating the use of the

multi-right-hand-side implementation of the matrix system solver described in the next

section.

Iterative solver with multiple right hand sides

In general, matrix A in (4.2) is too large to compute by direct methods (Choleskey or

LU decomposition) but is well suited to iterative solvers [18], of which the bi-conjugate

gradient (BCG) and the quasi-minimum residual (QMR) methods are two of the most

common. We have focused on the QMR method because it has been demonstrated to

be superior to the BCG approach for applications involving large sparse matrices [57].
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A number of strategies can be applied to precondition A in order to cluster its eigen-

values which has the intended consequence of accelerating solution convergence [67].

Possible options include the incomplete Cholesky and the incomplete LU (ILU) precon-

ditioners of which the latter was chosen because of its superior performance [18]. The

QMR routine can be implemented in block form utilizing the block Lanczos algorithm

to process multiple right-hand-side vectors of (4.2)), simultaneously. We performed

several studies to determine whether the grouping of specific right-hand-side vectors

along with the block size had any effect on the solution convergence rate. In general,

grouping right-hand-side vectors corresponding to adjacent antennas provided faster

convergence than when antenna vectors were arranged in random order. In addition,

the size of the block had a significant impact on the convergence rate. Figure 4.3 shows

a plot of the forward solution time per right-hand-side vector versus block size for the

configuration in Figure 4.2 (b) with 10,571 nodes and 54,720 tetrahedral elements. In

this case, 16 antennas on a 15 cm diameter circle in a single plane were used to generate

the source fields. The convergence time per right-hand-side is minimum at the block

size of seven. We generally used a size of eight as a convenient denominator for or-

ganizing the complete set of antennas with only nominal degradation in solution time.

4.1.2 Image reconstruction and the dual-mesh adjoint method

We previously utilizes the regularized Gauss-Newton approach described in Section

3.2.3 for reconstructing 2D permittivity and conductivity maps of a desired imaging

zone. In contrast to the direct differentiation approach used in the 2D method (Section

3.5), we have derived a fast algorithm to compute the elements of the Jacobian matrix

by exploiting the principle of reciprocity (a signal transmitted from antenna A and



4.1. Theory and techniques 159

0 5 10 15 20 25 30
0.4

0.6

0.8

1

1.2

1.4

1.6

RHS number

A
v
e

ra
g

e
 S

o
lv

in
g

 T
im

e
 p

e
r 

R
H

S
 (

s
)

Grouping Antenna Sequencially

Figure 4.3: Plot of the forward problem computation time per source antenna as a
function of block size (number of right hand sides computed simultaneously) when the
block QMR solver is used.

received at antenna B equals the signal transmitted from B and received at A).

Revisiting the forward solution equation (3.13), we can rewrite it in an operator

equation form as

LEz(~r) = b(~r) (4.11)

where the forward operator L is given by

L = ∇2 + k2(~r) (4.12)

and b is the source term.

We shall demonstrate that the operator L is a linear self-adjoint operator. L is

essentially a differential operator which is linear because the two conditions in (2.5) are

satisfied in the functional space. The property of self-adjointness is proven below: for

two arbitrary functions, f (~r) and g(~r), defined over domain Ω, the adjoint operators La

of L satisfy
〈g(~r),La f (~r)

〉

=
〈 f (~r),Lg(~r)

〉

(4.13)
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Utilizing (4.12), the RHS of (4.13) can be expanded as

〈 f (~r),Lg(~r)〉 =
∫

Ω
f (~r)

(

∇2g(~r) + k2(~r)g(~r)
)

d~r
=

∫

Ω
f (~r)∇2g(~r)d~r +

∫

Ω
f (~r)k2(~r)g(~r)d~r

(4.14)

If f (~r) and g(~r) are orthogonal at the boundary of the domain, i.e
∫

∂Ω
f (~r)g(~r)d~r = 0,

and applying the Green’s second identity (3.48), (4.14) can be written as

〈 f (~r),Lg(~r)〉 =
∫

Ω
g(~r)∇2 f (~r)d~r +

∫

Ω
g(~r)k2(~r) f (~r)d~r

=
〈g(~r),L f (~r)〉

(4.15)

Thus, from (4.15) and (4.13), we have La = L.

For a point source located at ~rs, (4.11) can be rewritten as

LEs(~r) = bs(~r) (4.16)

where bs(~r) = −Js0δ(~r − ~rs) and Es(~r) is the radiation field of this source. Taking the

derivative of (4.16) with respect to the τ-th parameter, k2
τ , yields

LS a(~r) = ba(~r) (4.17)

where ba(~r) = − ∂L
∂k2
τ
Es(~r) and S a =

∂Es(~r)
∂k2
τ

. For La = L, equation (4.17) is referred as the

adjoint equation of (4.16).

Additionally, assuming a normalized point source (defined in (3.45)) is applied at

the receiver location ~rr, the resultant field distribution Er(~r) can be computed by

LEr(~r) = br(~r) (4.18)

where br(~r) = −δ(~r − ~rr).
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Reciprocity of the electromagnetic field ensures that

〈br(~r), S a(~r)〉 = 〈ba(~r), Er(~r)〉 (4.19)

Substituting the definitions of br, ba, Er and S a into (4.19) produces

∫

Ω

δ(~r − ~rr)
∂Es(~r)
∂k2
τ

d~r =
∫

Ω

−
(

∂L
∂k2
τ

Es(~r)
)

Er(~r)d~r (4.20)

Considering the sampling property of the Dirac delta function, the LHS of (4.20)

becomes ∂Es(~rr)
∂k2
τ

which represents the sensitivity of the measured field at receiver ~rr with

respect to a perturbation of the τ-th parameter, k2
τ . This is precisely the definition of a

single element of the Jacobian matrix. As a result, we can rewrite (4.20) as

J((s, r), τ) =
∫

Ω

−
(

∂L
∂k2
τ

Es(~r)
)

Er(~r)d~r (4.21)

where s, r and τ are the indices of the source, receiver and parameter, respectively.

If the forward operatorL is discretized using the Galerkin scheme, (4.21) can be fur-

ther simplified by incorporating the dual-mesh basis functions in (3.33) and the weak-

form equation (3.42). A single element of the Jacobian matrix in the discretized form

can be expressed as

J((s, r), τ) = (DτEs)T Er (4.22)

where the (i, `)-th element of the matrix Dτ is defined as

di,` =

∫

Ω

φi(~r)φ`(~r)ϕτ(~r)d~r (4.23)

It is interesting that the matrix Dτ in (4.23) is only related to the forward and pa-
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rameter basis functions. Once the dual-mesh pair is determined, for all τ, Dτ can be

constructed ahead of time and stored for use in the reconstruction process. Moreover,

the basis function ϕτ(~r) is only non-zero at a small subzone of Ω, i.e. the neighboring

parameter elements of the τ-th parameter mesh node. We denote the domain where

ϕτ(~r) , 0 as Ωτ. Thus, for most of the (i, `) pairs where φi and φ` are defined outside

Ωτ, the integration in (4.23) yields zero and Dτ becomes a very sparse matrix. The

evaluation of the integration becomes complicated when the boundaries of the forward

element mesh are not precisely conformal to the boundaries of the parameter elements.

In this chapter, we only consider the conformal dual-mesh pair (an example is shown

in Figure 4.4).

In all cases, evaluating the Jacobian matrix J with (4.22) involves only an inner

product of field distributions (which are already computed at each iteration) multiplied

by weighting coefficients near each parameter node which is an O (N) operation com-

pared with O
(

N2
)

solving the sensitivity equation (3.54) for all permutations of sources,

s, and reconstruction parameters, τ. As N increases, the computational savings become

considerable. Note that equation (4.22) is general and applicable to both 2D and 3D

reconstruction problems (for both dual-mesh or single-mesh schemes).

4.2 Results

We have organized several experiments utilizing simulated measurement data to demon-

strate the viability of the 3Ds/2D algorithm. The scope of the investigations reported

here centers on computational efficiency, suitability of convergence behavior and whether

there are improvements over the 2D/2D approach with respect to metrics devised to

quantify 3D wave propagation effects. Specifically, in Sections 4.2.1 and 4.2.2, we
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have purposely eliminated the issue of data-model mismatch caused by using the scalar

field approximation through the incorporation of simulated measurements which were

generated by the scalar model. This synthetic data set also assumed no measurement

noise. The intent of these studies is to highlight the ideal performance of the inversion

algorithm prior to provoking any image quality degradations resulting from modelling

error. In the spirit of establishing the ideal performance, we computed the measurement

data on the same mesh employed for image recovery in these simulations. In Section

4.2.3, on the other hand, full vector field solutions were produced on a different high

resolution mesh in order to construct the synthetic measurement data for image recon-

struction which includes the effects of scalar model approximation. We also quantify

the differences that can be expected between the 3D vector and scalar models under

representative conditions at the start of this section.

X

Y

Z

Figure 4.4: 3D forward mesh overlapped with 2D reconstruction mesh. (Recognizing
that the boundaries of parameter elements are conformal to the forward mesh).

For all of the imaging experiments described here, the 3D FE region is an 18 cm

diameter cylinder with a height of 5 cm comprised of 11 uniform layers (as shown in

Figure 4.4) with a total of 10,571 nodes and 54,720 tetrahedral elements. The circular
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array (7.1 cm radius) of 16 antennas (1 cm in length) is concentric within the verti-

cal axis of the cylindrical FE mesh. In each imaging experiment, 16 transmitters were

used while signals were received at 9 opposing antennas for a total of 144 measure-

ments. The 2D image reconstruction mesh was a 12 cm diameter circle concentric with

the cylindrical volume comprised of 126 nodes and 214 triangular elements. For the

reconstruction process, the Tikhonov regularization with the empirical regularization

parameter as discussed in Section 3.2.3 was used in conjunction with a spatial filter

applied at each iteration to remove high frequency variations through an averaging fac-

tor of 0.1 (Section 3.2.3). In all cases the images converged to a stable solution within

roughly 6 iterations which required approximately 1 minute to execute on a Compaq

Alpha 833 MHz ES40 workstation. For the images presented in Sections A and B, the

background medium was 0.9% saline (εr = 77 and σ = 1.7 S/m) with an operating fre-

quency of 900 MHz. The experiments in Section 4.2.3 utilized a range of backgrounds

to illustrate the influence of contrast on 3D effects. All of these reconstructions started

from an initial estimate consisting of the values for the homogeneous background.

4.2.1 Simple cylindrical phantom

Figure 4.5 (a) shows the 900 MHz reconstructed images of a 2.9 cm diameter cylinder

(the geometry of the object is superimposed on the images) with εr = 38.5 andσ = 0.85

S/m for a contrast of 1:2 with the background properties. Both the permittivity and con-

ductivity distributions are recovered quite well with only minor artifacts appearing in

the conductivity image background. Transects through both images plotted in Figure

4.5 (b) illustrate the uniformity of the background recovery along with the position and

size of the inclusion with respect to the exact distribution (also shown). It is interesting

to note that the recovered properties underestimate those of the actual object in the cen-
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ter. This may be a consequence of the spatial filtering which constrains the algorithm

from exactly recovering a property step-distribution at the object background interface,

forcing the algorithm to compensate for this limitation by exaggerating the properties

in the center of the object.
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Figure 4.5: a) 900 MHz reconstructed permittivity and conductivity images for a 2.9
cm diameter cylinder within a homogeneous saline background, and b) the associated
property transects through the imaging domain including the recovered object com-
pared with the actual distributions.

4.2.2 Breast-like cylindrical phantom

Figure 4.6 (a) shows the 900 MHz permittivity and conductivity images recovered for a

centered breast-like region with an inclusion. The properties of the large 8 cm (roughly

2.2λ) diameter cylinder were εr = 30.0 and σ = 0.8 S/m while those for the offset, 3
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cm diameter inclusion were εr = 50.0 and σ = 1.2 S/m. In contrast to the previous

example, our log-magnitude/unwrapped phase minimization (Section 3.2.3) was used

for this case because the standard complex form diverged as a result of the high pro-

portion of measured data phase wrapping [151]. The excessive phase wrapping of the

scattered fields is directly related to the target size, contrast and operating frequency. It

is important that concepts successfully developed in the 2D/2D approach extend to the

3Ds/2D implementation.
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Figure 4.6: a) 900 MHz reconstructed permittivity and conductivity images for an 8 cm
diameter breast-like phantom with a 3 cm diameter inclusion within a homogeneous
saline background, and b) the associated property transects through the imaging domain
including the recovered breast and inclusion compared with the actual distributions.

From the image pair in Figure 4.6, it is clear that the permittivity component is

recovered more accurately than its conductivity counterpart. For instance, there is a
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considerably higher level of artifacts in both the background properties and internal

breast composition for the conductivity image and the reconstructed breast geometry

appears smaller for the conductivity relative to the permittivity map. These observa-

tions are generally consistent with previously reported findings [124]. For the plots

of the recovered properties along the vertical transects through the phantom (Figure

4.6 (b)), previous observations are also confirmed in that both images recover accurate

property profiles, although the permittivity component generally has fewer artifacts.

Additionally, it also appears that the location of the recovered inclusion is correct for

the permittivity image while it is skewed noticeably downwards in the conductivity

case. This is again consistent with previously reported images obtained from the 2D/2D

configuration [110], and is clearly exacerbated by the high contrast background.

4.2.3 Reduction in 3D propagation effects

Prior to investigating image reconstruction differences in a 3D problem between our ex-

isting 2D/2D algorithm and the 3Ds/2D approach developed here, we begin this section

by quantifying the differences in the underlying 3D scalar model of field propagation

with its more appropriate 3D vector version under two representative conditions – a

homogeneous imaging volume and an heterogeneous volume. Figure 4.7 shows field

values computed for the 3D scalar and full vector models at the imaging array antenna

sites under 500 MHz illumination of a homogeneous and heterogeneous volume. In

the homogeneous case a background medium with εr = 70 and σ = 1.7 S/m was used

while in the heterogeneous problem this same background included an off-centered

sphere (r = 1.78 cm, 2.54 cm offset from the center of the antenna array) with εr = 20

and σ = 0.18 S/m. The solutions illustrated in Figure 4.9 result in mean amplitude

differences of roughly 0.4% and 1.2% in the homogeneous and heterogeneous prob-
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lems, respectively, and a mean difference of 1.5◦ and 5.4◦ in phase in the two cases

(in both cases, the solutions were computed with a mesh of 56,636 nodes and 312,453

elements).
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Figure 4.7: Comparison of the a) magnitude and b) phase of the fields at antenna array
measurement sites for the 3D scalar and vector propagation models in a homogeneous
background and a background containing a spherical object within the array.

A previous study based on the 2D/2D algorithm presented results utilizing a met-

ric to estimate the imaging slice thickness [126] in order to quantify imaging artifacts

due to 3D field propagation effects. We present data here which directly compares the

3Ds/2D and 2D/2D algorithms in terms of this measure. The simulated scattered data

was computed using a full finite element 3D vector formulation [154, 153] at 900 MHz.

The study involved raising low permittivity spheres of different diameters through the

imaging plane defined by the array of monopole antennas. Permittivity and conduc-

tivity images were recovered for each sphere (large: 4.6 cm diameter, 1.3λ; medium:

3.6 cm diameter 1λ; small: 2.5 cm diameter, 0.7λ) at each vertical position sepa-

rated in 1.27 cm increments. The electrical properties of the spheres were εr = 20.0

and σ = 0.18 S/m while the relative permittivity of the background varied from 30 to
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70 with the conductivity fixed at 1.78 S/m. As an indication of the averaging effect

along the z-axis due to 3D microwave propagation, imaging slice thicknesses derived

from the recovered sphere half width and peak values of its estimated properties (see

Meaney et al. [126] for a complete definition) were computed for both the permittiv-

ity and conductivity, for all three spheres and over the complete range of background

permittivities, respectively. Figure 4.8 compares plots of the imaging slice thickness as

a function of background permittivity for both the 2D/2D and 3Ds/2D algorithms. For

almost all cases, the slice thickness for the 3Ds/2D algorithm is smaller. In general,

the slice thickness is greater for larger sized spheres and the permittivity slice thickness

is smaller than in the corresponding conductivity images. The conductivity thickness

decreases consistently for both algorithms and appears to converge to similar values for

the lowest background permittivity. The permittivity thicknesses for the 2D/2D algo-

rithm are relatively flat as a function of background permittivity – decreasing slightly

for the large sphere and increasing slightly for the two smaller spheres. In contrast, the

permittivity thicknesses for the 3Ds/2D cases consistently decrease with respect to a

lower background permittivity. In general, both algorithms demonstrate improvement

in reducing the imaging slice thicknesses with reduced background contrast, where the

3Ds/2D algorithm produces consistently smaller values and is generally better at han-

dling larger targets. As a visual example of the 3Ds/2D algorithm enhancement in a

representative case, Figure 4.9 shows a pair of conductivity images obtained from the

reconstructions of the large sphere with the antenna array positioned in the azimuthal

plane by the two methods. The improvement is evident in terms of the sharper and

more accurate contrast with the background that is achieved with the 3Ds/2D method.



170 Chapter 4. 3D scalar field driving 2D reconstruction algorithm

30 40 50 60 70 30 40 50 60 70 30 40 50 60 70
2

3

4

5

6

7

8

9

Background Relative Permittivity

S
lic

e
 T

h
ic

k
n
e
s
s
 (

c
m

)

large sphere medium sphere small sphere 

2D/2D σ
3D/2D σ
2D/2D ε
3D/2D ε

r

r

Figure 4.8: Plots of the slice thickness computed at 900 MHz for the recovered permit-
tivity and conductivity images using 4.6, 3.6, and 2.5 cm diameter spheres (εr = 20.0,
and σ = 0.18 S/m) as a function of background permittivity (σ = 1.78 S/m). Plots are
compared with corresponding results using the 2D/2D algorithm.

4.3 Conclusions

We have implemented a 3D scalar field solution/2D Gauss-Newton iterative parame-

ter inversion algorithm (3Ds/2D) for microwave imaging. Various strategies including

exploitation of a 3D scalar formulation and a truncated mesh with radiation boundary

conditions were deployed to limit the computational overhead of the problem. Addi-

tionally, as an important initial step, we developed a 2D reconstruction procedure that

is integrated with the 3D field solution. This is significant in a practical sense because

measurement data is a precious commodity and restricting the parameter reconstruction

to 2D allows this new algorithm to be applied to the limited microwave signal channels

now in place [122]. However, it is also important because the 2D inversion portion

of the algorithm has been developed to readily generalize to a full 3D reconstruction

when the requisite amount of measurement data can be acquired. Implementation of

the adjoint method to dramatically accelerate computation of the Jacobian matrix has

made 3D approaches much more attainable.
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Figure 4.9: a) Plots of the reconstructed conductivity for the large sphere (4.6cm diam-
eter) in background εr = 60 at 900 MHz by 3Ds/2D and 2D/2D methods, b) transects of
the reconstructed conductivity profiles together with the true value of the distribution.
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The range of results presented here demonstrates the capabilities of the 3Ds/2D al-

gorithm in a variety of settings – specifically in a simple 2D cylinder and a more com-

plex, large cylindrical geometry. In addition, a full set of experiments were performed

to illustrate that the 3Ds/2D algorithm is an overall improvement over the 2D/2D algo-

rithm in terms of reducing previously observed 3D artifacts. In general, these results

are encouraging and set the stage for development of more advanced 3D/3D methods

in the next chapter.



Chapter 5

Three dimensional microwave imaging

Three-dimensional microwave imaging utilizing inverse scattering techniques has re-

ceived increased attentions over the past decade. With the dramatic increase in prob-

lem size of both the forward field modelling and parameter reconstruction associated

with the transition from 2D to 3D problems, enhancement of the computational effi-

ciency is critically important in making microwave imaging viable. In this chapter, we

present two 3D image reconstruction methods utilizing 3D scalar and vector forward

computational models, respectively. The proposed methods, together with the previ-

ously proposed 2D and 3D/2D hybrid methods, outline a spectrum of dual-mesh based

algorithms which enable us to investigate the fine balance between the model accu-

racy and efficiency. Several strategies developed for the preceding approaches were

improved upon and incorporated into the new 3D reconstruction algorithms including

the iterative block solver and the adjoint method for constructing the Jacobian matrix.

For the 3D vector forward method, an optimized FDTD method with a uniaxial per-

fectly matched layer (UPML) technique was developed to obtain more complete field

information within acceptable computational time and is considerably faster than the

3D reconstructions previously reported. These algorithms were tested with both simu-

173
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lated and experimental data where the measurement was acquired utilizing our new 3D

data acquisition system for microwave breast imaging. The new reconstructions were

evaluated in terms of the computational efficiency and compared with other previously

developed algorithms.

This chapter is organized in the following manner: the theory and method section

(Section 5.1) focuses on explaining the method details and innovations of the proposed

3D reconstruction algorithms, i.e. the 3D scalar forward/3D reconstruction (3Ds/3D)

and the 3D vector forward/3D reconstruction (3Dv/3D). 3D dual-meshes, the nodal ad-

joint method and optimizations of 3D vector field solver are discussed sequentially. A

brief introduction to our 3D data acquisition system is provided in Section 5.2. The

results section contains simulation and measurement data reconstructions to test and

evaluate the performance of the proposed algorithms by making comparisons to the

existing 2D methods. In particular, the computation complexities for the range of dual-

mesh based algorithms are compared. We conclude this chapter with a summary dis-

cussion in Section 5.4.

5.1 Theory and method

The 3D reconstruction algorithms in this chapter are direct extensions of the 2D/2D

and the 3Ds/2D algorithms discussed in Chapter 3 and 4. The iterative regularized

Gauss-Newton method and the dual-mesh scheme are employed to build the algorith-

mic infrastructure in the 3D space. One of the most significant changes compared with

the preceding algorithms is that the reconstruction meshes are 3D regions instead of 2D

slices. Consequently, these 3D algorithms should no longer be called as “tomographic”

imaging methods in a strict sense since tomography refers to cross-sectional imaging.
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Another difference is the dramatic increase in the sizes of forward field and parame-

ter modelling problems. In addition, since more unknowns must be reconstructed, this

requires more measurement data.

The introduction of the adjoint method in the last chapter dramatically shortened

the computation time for constructing the Jacobian matrix, which, consequently, trans-

ferred the burden of the reconstruction time-limiting step to the forward field calcula-

tion. For 3D imaging, improvement of the forward modelling efficiency is essential for

the viability of the algorithm. The 3D finite element method with iterative block solver

devised in the previous chapter has demonstrated promise in solving the scalar forward

problem simplified form the vector form with the 2D property distribution and TM

wave approximations. For 3D reconstructions, the dielectric profiles are also 3D distri-

butions and the 2D assumption becomes yet another approximation. Alternatively, the

computational advantages of the FDTD method in 2D problems has been demonstrated

in Section 3.6.1 which motivates the use of the 3D FDTD method to model the full

3D vector equation. The marching-on-time (MOT) feature of the FDTD method also

provides additional opportunities to further reduce the computational time. Finally, an

approximated adjoint method, the nodal adjoint method, is also derived in this chapter

which further enhances the reconstruction efficiency while introducing only nominal

accuracy degradation.

In this section, the dual-mesh configurations for the 3D scalar forward/3D recon-

struction and the 3D vector forward/3D reconstruction are first demonstrated. Then the

nodal adjoint method is derived with a general form which can be used in a range of

algorithms, including the 3D algorithms discussed in this chapter. Formulation of the

3D FDTD algorithm is subsequently discussed together with the implementation de-

tails especially with respect to the absorbing boundary condition and the computational
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efficiency analysis. Finally, enhanced FDTD methods implementing high-order FDTD

versions, an ADI update scheme and various additional accelerations via initial field

computations are discussed in conjunction with their overall efficiencies are analyzed

and compared with the traditional 3D FDTD forward solver.

5.1.1 3D dual-meshes

The dual-mesh scheme discussed in Section 3.3 was developed in a general manner

such that it could be utilized in modelling the 3D distributions of both the forward

fields and parameters. With respect to the imaging system configuration at Dartmouth

College, the dual-meshes of the 3Ds/3D and the 3Dv/3D methods are illustrated in

Figure 5.1 (a) and (b).

The forward mesh for the 3Ds/3D method is similar to the one used in the 3Ds/2D

method (Figure 4.1), i.e. a cylindrical mesh concentrically aligned with the circular

antenna array while extending beyond the antennas in the radial direction. The forward

mesh for the 3D vector reconstruction is a cubic shaped 3D Yee-grid which will be

discussed in the following subsection. The reconstruction meshes for both methods

are identical 3D cylindrical meshes which are concentric to both the antenna array and

the forward meshes to model the inhomogeneities within a 3D domain. Facilitated

by the dual-mesh representation, the forward and reconstruction meshes can possess

different mesh densities. Moreover, the nodal adjoint method, which will be derived

soon, significantly simplifies the computations of the Jacobian matrix in cases where

the the forward mesh and the reconstruction mesh are not precisely conformal at their

boundaries (such as the case in Figure 5.2). This simplifies the preprocessing of the

reconstruction and greatly enhances the flexibility.
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Figure 5.1: Forward and reconstruction mesh orientations for (a) the 3Ds/3D and (b)
the 3Dv/3D methods
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5.1.2 Nodal adjoint method

The adjoint formula of the Jacobian matrix (4.22) and (4.23) can be rewritten in terms

of a summation over forward elements as

J((s, r), τ) =
∑

e∈Ωτ
(De
τEe

s)T Ee
r (5.1)

where Ωτ denotes the region within which ϕτ , 0 and ∑

e∈Ωτ denotes the summation

over the forward elements which are located within Ωτ. Matrix De
τ is a square matrix

with each element defined by

dτie,`e =
∫

Ωe

φie(~r)φ`e(~r)ϕτ(~r)d~r (5.2)

where ie = 1, 2, · · · ,M and `e = 1, 2, · · · ,M are the local node indices and M is the

total node number for a single forward element (M = 3 in 2D and 4 in 3D). φ and ϕ

represent the basis functions over the forward and reconstruction meshes, respectively.

Ωe is the spatial domain occupied by the e-th forward element. Ee
s = {Es(~pe

κ)}Mκ=1 and

Ee
r = {Er(~pe

κ)}Mκ=1 are the fields at the vertices {~pe
κ}Mκ=1 of the element due to source

antennas at s and r, respectively. Equation 5.1 is referred as the element-based form of

the adjoint formula.

For cases where the boundaries of the forward elements do not precisely match

those of the parameter elements (such as the 2D case shown in Figure 5.2), the eval-

uation of the integration in (5.2) becomes more difficult since integrations often have

to be evaluated over partial elements of the forward mesh. A nodal adjoint method is

introduced to simplify the integration for a given dual-mesh pair under the assumption

that the averaged size of the forward elements is significantly smaller than that of the

parameter elements (a discussion on the accuracy of the nodal adjoint method can be
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found at the end of this subsection). We shall derive the expression for this method.

Coarse Mesh

Fine Mesh

Rτ

The   -th coarse nodeτ

Figure 5.2: Challenging dual-mesh configuration for the element based adjoint method.

Within domain Ωe where e ∈ Ωτ, the parameter basis function ϕτ can be expanded

as a linear combination of the forward basis functions:

ϕτ(~r) =
M

∑

κ=1
ϕτ(~pκ)φκ(~r) (5.3)

Inserting (5.3) into (5.1), we get:

J((s, r), τ) =
∑

e∈Ωτ

M
∑

κ=1
ϕκ(~pκ)(De

τκEe
s)T Ee

r (5.4)

where De
τκ is an M × M matrix defined as

De
τκ =






















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



〈φ1φ1φκ〉 〈φ1φ2φκ〉 · · · 〈φ1φMφκ〉
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...
. . .
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
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


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











(5.5)

where 〈·〉 denotes the volume integration over Ωe. Notice that the nonzero off-diagonal

elements in De
τκ result in cross-multiplication terms of the fields at different nodes in

(5.4). To simplify the analysis, we approximate the weighting matrix De
τκ by summing

each column (or row) and adding the off-diagonal elements to the diagonal and simul-
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taneously zeroing out all off-diagonal terms

D̃e
τκ =









































∑M
i=1〈φiφ1φκ〉 0 · · · 0

0 ∑M
i=1〈φiφ2φκ〉 · · · 0

...
...

. . .
...

0 0 · · · ∑M
i=1〈φiφMφκ〉














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
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
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
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









(5.6)

It is not difficult to prove that (see Appendix E)

M
∑

κ=1
D̃e
τκ =

Ve

M I (5.7)

where Ve is the volume of the e-th forward element (in 2D, Ve is the area of the element)

and I is an M × M identity matrix. By substituting (5.7) back into (5.4) and expanding

the vector multiplications, the reorganized equation can be written as

J((s, r), τ) =
∑

n∈Ωτ

(∑

e∈Ωn Ve

M

)

ϕκ(~pn)Es(~pn)Er(~pn) (5.8)

where
∑

n∈Ωτ refers to the summation over the forward nodes which fall inside Ωτ and
∑

e∈Ωn refers to the summation over the forward elements that share the n-th forward

node. The term
(
∑

e∈Ωn Ve
M

)

is a scalar term associated with the n-th forward node which

can be simplified as Vn.

The nodal form adjoint formula (5.8) allows us to compute the Jacobian matrix for

both conformal and nonconformal dual-meshes quite easily: E s(~pn) and Er(~pn) are the

nodal electrical field values computed directly from the forward problem; Vn and ϕτ(~pn)

require only simple algebraic operations and can be built on-the-fly. This is important

for forward techniques which might dynamically generate their meshes, such as FDTD

and some adaptive methods. Note that the reconfiguration of the weighting matrix

De
τκ is only valid when the forward element is substantially small with respect to the
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parameter mesh elements such that the field values at its vertices are approximately

equal.

To validate our derivations, we computed the Jacobian matrices using the nodal

adjoint formula over a series of refined dual-meshes (40 × 40 nodes grid). Plots of a

segment of the original single-mesh and the refined forward mesh (level 2) are shown

in Figure 5.3. The maximum relative error between the nodal adjoint and the adjoint

Jacobian are plotted vs. the ratios between the averaged parameter and forward element

sizes (Figure 5.4). From this plot, it is reasonable to assume that when the forward

element is small compared with the parameter element, the nodal adjoint Jacobian is a

good approximation to the accurate Jacobian matrix.

(a) (b)

Figure 5.3: A fraction of the dual-meshes with different parameter/forward element
area ratios: (a) 1:1 and (b) 4:1. The forward and parameter meshes are denoted by thin
and thick lines, respectively. Note that in both diagrams, part of the forward mesh is
overlapped by the parameter mesh.

5.1.3 3D vector forward solution coupled with 3D reconstruction

All of the dual-mesh based algorithms which have previously been developed rely on

certain assumptions or approximations in order to simplify the forward model and re-
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Figure 5.4: Plot of the maximum relative error of the nodal adjoint Jacobian at various
parameter/forward element area ratios.

duce the reconstruction time. The 3D vector forward solution provides the most com-

plete forward field solution and is clearly the most challenging case. A 3D FDTD

method is chosen in this case for its simplicity and efficiency coupled with a uniaxial

perfectly matched layer (UPML) technique as the absorbing boundary condition simi-

larly to the GPML technique in the 2D case.

In the following subsections, we discuss a variety of issues associated with the

3Dv/3D method, including the formulation of the UPML update scheme in lossy media,

the nodal adjoint expression for constructing the Jacobian matrix, and the possibility of

reducing the computation time by utilizing high order spatial difference and initial field

distributions. An alternative-directional-implicit (ADI) update scheme for lossy media

using UPML is developed to implement the acceleration via setting the initial field

values.

Forward model and dual-mesh

The derivation of the standard FDTD method in 3D space is very similar to that of the

2D case, except that all 6 components, i.e. Eξ and Hξ (ξ = x, y, z), are nonzero and

there are 6 equations in the expanded curl relations instead of 3 as in 2D FDTD method
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under the TM wave assumption (equation (3.1)). For conciseness, we focus only on

the 3D Yee-grid and absorbing boundary condition while omitting the derivation of the

standard 3D FDTD update equations.

E

H

(a)

E

H

(b)

Figure 5.5: FDTD grid in 3D space: (a) E-grid, (b) H-grid.

The FDTD grids in the 3D space also have two variants, the E-grid and the H-grid

shown in Figure 5.5. Similar to the 2D cases, these two grids represent the identical

spatial relationships except that the origin of each grid is located at (1/2,1/2,1/2) of

the other. The uniform E-grid (∆x = ∆y = ∆z = ∆) is used in all of our 3D FDTD

computations.

Gedney [61] developed a PML absorbing boundary condition with non-split-field

representation, i.e. the uniaxial PML, and extended it for lossy medium. This tech-

nique is implemented in our 3D vector reconstruction algorithm and its formulation is

presented briefly below.

Similar to the implementation in 2D cases, the PML in 3D space requires 26 PML

slabs to terminate the cubic FDTD grid in all directions. With the stretching coordinate
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notations, the central cube is the working volume with coordinate stretching coefficients

sx = sy = sz = 1. In order to match the media at all interfaces, the stretching coordinate

coefficients at the non-perpendicular direction in all surface PML slabs must be identi-

cal to those of the working volume, i.e. 1; the coefficients in the perpendicular direction

are an increasing function when stepping away from the interface. The stretching coor-

dinate coefficients [35, 62] in the edge and corner slabs have similar characteristics. A

sample setting of the PML slabs is depicted in Figure 5.6.

Figure 5.6: Configuration of the 3D UPML absorbing boundary condition (the surface,
edge and corner slabs were positioned slightly away from the working volume, i.e. the
center cube, to illustrate their spatial positions).

The stretching coordinate expression of Maxwell’s equations (3.3) for all subzones

in Figure 5.6 can be rewritten in a concise form as [188]:

∇ × ~E(~r) = − jωµ ¯̄s ~H(~r)
∇ × ~H(~r) = jωε ¯̄s~E(~r)

(5.9)
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where ¯̄s is the stretching coefficient tensor defined by

¯̄s =
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(5.10)

sx,sy and sz can be chosen from a variety of forms including (3.68). The following

expression is used by Gedney:

sξ(ξ) = κξ(ξ) +
σξ(ξ)
jωε (5.11)

where ξ = x, y, z and κξ0(ξ) and σξ(ξ) are defined by

κξ0(ξ) = 1 + κmax
(

ξ

∆ξ

)m

σξ(ξ) = σmax
(

ξ

∆ξ

)m (5.12)

with κmax,σmax and m being the parameters.

For the lossy case, the first equation in (5.9) is transformed into time domain and

expanded as [62]
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(5.13)

with
∂
∂t (κxBx) + σx

ε0
Bx =

∂
∂t (κzHx) + σz

ε0
Hx

∂
∂t (κyBy) +

σy
ε0

By =
∂
∂t (κxHy) + σx

ε0
Hy

∂
∂t (κzBz) + σz

ε0
Bz =

∂
∂t (κyHz) +

σy
ε0

Hz

(5.14)

where
Bx = µ

sz
sx

Hx

By = µ
sx
sy

Hy

Bz = µ
sy
sz

Hz

(5.15)
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are the magnetic flux densities in the stretched space. Expansions of the the second

equation in (5.9) yields
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∂
∂t (κxQx) + σx

ε0
Qx =

∂
∂t (κzEx) + σz

ε0
Ex

∂
∂t (κyQy) +

σy
ε0

Qy =
∂
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ε0
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∂
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(5.18)

where
Px = syEx

Py = szEy

Pz = sxEz

Qx =
sz
sx

Ex

Qy =
sx
sy

Ey

Qz =
sy
sz

Ez

(5.19)

are auxiliary variables.

Applying central differences in both time and space, the discretized update scheme

for Hx is a two-step process as

Bn+1/2
x (pC) = cABy(pC)Bn−1/2

x (pC)
− cBBy(pC)

(

En
z (pR)−En

z (pL)
∆y − En

y (pT )−En
y (pB)

∆z

)

Hn+1/2
x (pC) = cAHz(pC )Hn−1/2

x (pC)
− cBHz(pC)

(

cCHx(pC )Bn+1/2
x (pC) − cDHx(pC )Bn+1/2

x (pC)
)

(5.20)
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where
cCHξ(p) = κξ(p) − σ

∗
ξ
(p)∆t
2ε0

cDHξ(p) = κξ(p) + σ
∗
ξ
(p)∆t
2ε0

cABξ(p) = cCHξ(p)
cDHξ(p)

cBBξ(p) = 1
cDHξ(p)

cAHξ(p) = cABξ(p)
cBHξ(p) = 1

µ(p)∆t cBBξ(p)

(5.21)

are coefficients where ξ = x, y, z and spatial points pC , pL, etc. are marked on Figure

5.7. Similarly, we can derive the update equations for Ex from (5.16), (5.17) and (5.18)

as

Pn+1/2
x (pCC) = cAP(pCC )Pn−1/2

x (pCC)
− cBP(pCC)

(

Hn+1/2
z (pN )−Hn+1/2

z (pS )
∆y − Hn+1/2

y (pW )−Hn+1/2
y (pE )

∆z

)

Qn+1/2
x (pCC) = cAEy(pCC )Qn−1/2

x (pCC)
− cBEy(pCC)

(

Pn+1/2
x (pCC) − Pn+1/2

x (pCC)
)

En+1/2
x (pCC) = cAEz(pCC )En−1/2

x (pCC)
− cBEz(pCC)

(

cCEx(pCC )Qn+1/2
x (pCC ) − cDEx(pCC )Qn+1/2

x (pCC)
)

(5.22)

where
cAP(p) =

ε(p)/∆t−σ/2
ε(p)/∆t+σ/2

cBP(p) = 1
ε(p)/∆t+σ/2

cCEξ(p) = κξ(p) − σξ(p)∆t
2ε0

cDEξ(p) = κξ(p) + σξ(p)∆t
2ε0

cAEξ(p) = cCEx(p)
cDEξ(p)

cBEξ(p) = 1
cDEξ(p)

(5.23)

are update coefficients. Analogously to the derivations of the equation for Hx and Ex

in (5.20) and (5.22), respectively, the corresponding y and z components of the fields

can be easily obtained by rotating the subscripts, i.e. x → y → z → x, along with

the relative positions of the points on Figure 5.7. To apply the PEC/PMC boundary

condition at the exterior of the grid, one simply needs to leave these fields un-updated

after initializing them with zeros before the time stepping. Note that most of the update
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coefficients in (5.21) and (5.23) can be stored in 1D arrays which provides significant

memory savings.

Figure 5.7: EM field vector positions for deriving the update relationships in the 3D
FDTD method.

The implementation of the current source, the amplitude/phase extraction and the

source low-pass filtering are also applied in similar manners as those in the 2D cases

(refer to Chapter 3 for details). The CFL stability condition for the 3D FDTD method

(coupled with the UPML ABC) can be written as

∆t ≤ 1

cmax

√

1
∆x2 +

1
∆y2 +

1
∆z2

(5.24)

and the CFL number (CFLN) is defined by

CFLN = cmax∆t

√

1
∆x2 +

1
∆y2 +

1
∆z2 (5.25)

Details of the numerical dispersion analysis for the 3D FDTD method can be found
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in [189].

5.1.4 Accuracy of the 3D FDTD solver for lossy media

We computed the steady-state frequency-domain solution of the radiation field of an in-

finitely small z-oriented dipole antenna with the 3D FDTD approach is outlined above.

The background medium has electrical properties εr = 22.85 and σ = 1.02 to simulate

an 83% glycerin solution. A circular receiver antenna array included 15 receivers and

one transmitter equally spaced on an 15.2 cm diameter circle (as shown in Figure 5.1

(b)) with an operating frequency of f = 1100 MHz.

The analytical solution of the radiation fields for this configuration is derived in

[87]. The electric and magnetic field components in spherical coordinates are expressed

as
Er =

I0L0
jωε

exp(− jkr)
4π

( j2k
r2 +

2
r3

)

cos(θ)
Eθ = I0L0

jωε
exp(− jkr)

4π

(

− k2

r +
jk
r2 +

1
r3

)

sin(θ)
Eφ = 0
Hr = Hθ = 0
Hφ = I0L0

exp(− jkr)
4π

( jk
r2 +

1
r3

)

sin(θ)

(5.26)

where I0 is the current and L0 is the length of the dipole, r, θ, φ are the spherical coordi-

nates, k is the complex wave number and ω is angular frequency.

In the far field zone, the non-zero field components are given by

Eθ = jI0L0
exp(− jkr)

4πr ωµ sin(θ)
Hφ = jI0L0

exp(− jkr)
4πr k sin(θ)

(5.27)

The amplitudes and phases at the receivers computed from the 3D FDTD method (with

the source in form of equation (3.45)) utilizing two mesh densities, i.e. R = 20 and

R = 40 where R is the number of nodes per wavelength, are compared with that from

the previous analytical solutions (5.26) and (5.27) in Figure 5.8. From the curves in
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Figure 5.8, the numerical and the analytical models match quite well in both amplitude

and phase, especially for the high-density mesh case. In fact, the analytical solution in

(5.26) and its far field approximation are almost indistinguishable in the plot.
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Figure 5.8: Comparison between FDTD solutions with analytical solutions: (a) ampli-
tude and (b) phase.

In Appendix C, we model the radiation field distribution inside the illumination tank

using this 3D FDTD forward technique under more realistic settings. These settings

include the plastic tank walls, the air gap between the coupling medium surface and top

wall and the air outside the tank. We demonstrate the negligible effect of the presence of

the walls in such a lossy environment and validate our approach of treating the forward

modelling as an unbounded problem for our imaging setting.

5.1.5 Computational complexity comparison to 3D FE/BE method

Similar to the analysis in Section 3.6.1, we compare the computational complexity of

the 3D FDTD method and 3D FE method for the forward solution in this subsection.

A uniform grid with Nx = Ny = Nz = N is used for both methods while in the FE

mesh, each cube is split into 3 tetrahedral elements. The total node number for both
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meshes is N3. In assembling the FE matrix for the simplified scalar model (Equation

(3.13)), the size of the matrix is N3 × N3. The minimum half-bandwidth for finite

element approach is roughly N2 when numbering the nodes sequentially in each layer.

If a BE matrix is incorporated to account for the boundary condition, the half-bandwidth

increases to roughly 6N2 which is essentially the number of the boundary nodes. Thus,

to solve this matrix equation with the Cholesky factorization algorithm, the total flop

count for FE/BE hybrid approach is 36N7 + 42N5 + 2N3 while that for FE method with

absorbing boundary conditions is N7 + 7N5 + 2N3.

The total flop count for obtaining a 3D FDTD steady-state solution has a similar

expression to that in (3.90). Summing the float operations in (5.20) and (5.22) and

multiplying by 3 to account for the components in all directions, the flop number for a

single iteration is Fiter = 84N3. The expression for Fsteady is once again approximated

by the number of time-steps required for round-trip time-step of the radiation wave

which leads to the identical result as that in the 2D case, i.e. (3.91). Consequently, the

total flop count for 3D FDTD method (with UPML for lossy medium) is given by

FFDT D = 168
√

3N4 cmax

CFLN × cbk
(5.28)

A plot of the total flop number at various N values is shown in Figure 5.9 where
cmax
cbk
=
√

10 and CFLN ≈ 1 are used in the calculation. From the plot, the computational

advantage of 3D FDTD method compared to the FE method is even more significant

than for the 2D cases (see Figure 3.16).

Similar to the comparison in the 2D case (Section 3.6.1), the actual computational

efficiency of the FE/BE method with our reconstruction settings is not as bad as in

this example. Additionally, the implementation of iterative solvers in solving FE/BE

equation can also significantly reduce the computational expense of this approach. In
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Section 5.3, we list the forward field computation time for a range of methods.
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Figure 5.9: Comparison of the total floating-point operation counts between the 3D
FE/BE and 3D FDTD methods for different mesh sizes.

Nodal-adjoint approach for the 3D FDTD method

Given the derivations in Section 5.1.2, the nodal adjoint formulation for 3Dv/3D method

is straightforward to construct. In the 3D FDTD grid, the effective volume Vn for

all interior forward nodes are identical, which is the volume of a single voxel, i.e

Vn = ∆x∆y∆z. The nodal adjoint formula in this case is correspondingly written as

J ((s, r), τ) = −
∑

n∈Ωτ

(∆x × ∆y × ∆z) × ϕτ(~pn) × Es(~pn) × Er(~pn) (5.29)

As a simple extension from (5.29), for the 2D dual-mesh reconstructions using

FDTD as forward solver, the adjoint formula is easily computed by

J ((s, r), τ) = −
∑

n∈Ωτ

(∆x × ∆y) × ϕτ(~pn) × Es(~pn) × Er(~pn) (5.30)

where ∆x×∆y is the area of a 2D FDTD cell. Equation (5.30) is the actual method used

for all 2DsFDTD/2D reconstructions in Chapter 3.
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5.1.6 Enhancement of the 3D vector forward solver

High order spatial difference scheme

In the derivations of the FDTD update equations, a central difference scheme was used

in both time and space which provided 2nd-order accuracy. Higher order difference

schemes were investigated by Turkel [194, 193], Fang [47] and others in order to im-

prove accuracy or equivalently reduce the problem size. The studies into high-order

FDTD methods is an active topic in FDTD research.

A Ty(2,4) method proposed by Turkel et al. [194](i.e. implicit 2nd-order in time

4th-order in space) is implemented in our reconstructions along with the UPML FDTD

algorithm. The implementation of this method is quite simple. The basic idea is to

replace the spatial derivative terms in the curl operator (equation (5.13) and (5.16)) by

4th order implicit difference representations. Denoting the 4th order accuracy differ-

ence operator as D4 representing the discretization form of ∂
∂ξ

, we have the following

implicit relationship for the discretized difference at the neighboring nodes [193]:

D4un
i+1 − D4un

i−1
24 +

11
12D4un

i =
un

i+1/2 − un
i−1/2

∆ξ
(5.31)

where ξ = x, y, z; n is the time step and u can be any one of the E or H components.

Applying this implicit relationship to every spatial derivative term in the LHS of (5.13)

and (5.16), we get 12 matrix equations with the following form
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where

A = 1
24
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is a matrix of size Nξ × Nξ (notice that fourth order backward and forward differences

are used at the two end points). To solve for the 4th order differences from (5.32),

the LU decomposition of A matrix is analytically obtained and can be pre-computed

and stored before the time stepping. Twelve back-substitution processes need to be

performed to construct all spatial derivatives in (5.13) and (5.16) during each iteration.

Consequently, the spatial central difference terms in update equations (5.20) and (5.22)

are substituted by the solutions to (5.32) for all field components.

The implementation of this algorithm successfully reduces the forward mesh to 1/8

of its original size while yielding similar accuracy. However, proportional time savings

are not achieved due to the operations for the back-substitutions at each time step. The

total flop number per time-step in the Ty(2,4) scheme is roughly 4 times more than

that of the 2nd-order method. In general, the high-order methods are useful for im-

proving the forward problem accuracy, but the improvement in terms of computational

efficiency is not significant.

Computation time improvements by supplying initial fields

In the floating-point operation analysis of the FDTD method, the total flop number for

the FDTD is proportional to the time steps for reaching steady-state. We have found

that the steady-state time steps Fsteady is related to the initial value of the field. If the

FDTD time-stepping starts from a null field distribution (i.e. all components are zeros),
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it takes longer to reach steady state than from a field distribution that resembles the final

solution.

A simple 2D forward problem is computed to illustrate this finding. A 2.5 cm

×2.5 cm square dielectric object is located at the center of the antenna array whose

properties are εr = 10 and σ = 0.5 S/m and those of the background are 25 and 1.0 S/m,

respectively. Utilizing polar coordinates, and the transmitter operating at f = 900 MHz

and located at (r = 7.6 cm, θ = 0◦), the amplitudes of the receivers at θ = 90◦ and

θ = 180◦ are recorded and plotted vs. time step in Figure 5.10 in comparison to the

responses computed from the initial values of a similar field distribution, i.e. the fields

due to the presence of a similar sized object that has εr = 12, σ = 0.7 S/m. In both

computations, the time step ∆t is set to 1.64e-11s to ensure stability. From the plot, it

is obvious that the second approach leads to significantly fewer time steps to achieve

steady-state. It should be noted that the sharp oscillations in the solid lines are referred

as spurious modes induced by sudden changes in the dielectric properties.

Moreover, in an iterative reconstruction process, the update of the parameters be-

tween successive iterations becomes smaller, resulting in increasingly similar field dis-

tributions as the iterative process advances. Therefore, the field distributions at the final

time step of the previous iteration are good starting points for the subsequent iteration.

Utilizing this finding, we derived an iterative FDTD approach in conjunction with the

iterative reconstruction process to reduce the forward modelling time.

The implementation of this scheme is quite simple. Extra memory is required to

store all field components and the accumulated elapsed time at the end of each iteration

for each source. At the subsequent iteration, the fields are initialized by the stored

fields from the previous iteration of the corresponding source. Then the fields start

updating as part of the FDTD process until achieving steady-state, at which point the
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Figure 5.10: Amplitudes at different time-steps for receivers located at (a) θ = 90◦ and
(b) θ = 180◦.
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above process is repeated. We shall demonstrate in Section 5.1.6 that it is possible to

reduce the steady-state time step number to 1/2 to 1/3 of the original round-trip time

step by supplying initial field estimates while not compromising convergence and image

quality.

From a wave point of view, when a source is located close to the boundaries of the

domain, the time to reach steady state takes approximately twice as long as when the

excitation is located at the center of the domain because of the increased averaged dis-

tance between the source and the receivers. For our microwave imaging configuration,

the unknown object is typically located at the center of the imaging zone. Therefore, the

perturbed EM wave induced by the parameter updates during the iterations propagates

to the receiver in less time than from the application of excitations near the borders of

the reconstruction domain. This may partially explain the time step number reduction

from supplying an initial field estimate during the iterative FDTD approach.

One significant impact of utilizing this scheme is on computing ∆t. In our previ-

ous 2D and 3D algorithms, the value of ∆t is determined dynamically by the minimum

values of the permittivity and conductivity by (3.84) or (5.24) at each iteration. In re-

constructions where the object has a lower permittivity value than the background, the

value of ∆t typically drops at each iteration in coordination with the recovery of the

object. When applying the iterative FDTD approach in cases with a dynamic ∆t, the

spurious waves observed in Figure 5.10 become more severe and degrade the quality

of the forward field. To avoid these spurious waves, utilization of a constant time-step

throughout all iterations is important and the iterative FDTD process must be tailored

accordingly. The minimum permittivity εmin should be estimated before the reconstruc-

tion process so that∆t for all iterations can be determined from (5.24). At each iteration,

we need to compare the updated permittivity values with εmin and set εmin as the lower
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bound to ensure stability. Using this approach, the number of time steps for the first

several iterations is greater than that for the original method; however, overall, the ac-

celeration by providing an initial field distribution makes the iterative FDTD approach

faster. Examples are demonstrated in Section 5.3.

5.1.7 ADI FDTD with lossy UPML absorbing boundary condition

As was been demonstrated in the previous subsection, utilizing an initial field distribu-

tion estimate can reduce the steady-state time step number. However, to meet the sta-

bility criteria, a constant time-step needs to be used which results in the computational

redundancy in the first few iterations. In this subsection, we derive an uncondition-

ally stable FDTD scheme, the alternative-directional-implicit (ADI) FDTD method, for

forward field modelling in order to avoid the time step redundancy.

The ADI FDTD technique was initially proposed by Zheng et al. in 1999 and

independently by Namiki in 2000. The general description and formulation of this

technique can be found in [209, 140]. It has been extended to the lossy case by Lazzi et

al. [106], to the PML absorbing boundary condition case by Liu et al. [114] and Wang

et al. [200] and the UPML case by Zhao[208, 207]. However the ADI formulation for

both lossy medium and UPML ABC has not previously been discussed in the literature

to the best of our knowledge.

In this situation, for each time step of the ADI FDTD method, field updates are

computed utilizing two sub-steps: 1) compute all field components at time step n+ 1/2

from the field distributions of time step n where the second spatial difference terms in

the discretized curl equations, i.e. (5.20) and (5.22), use the fields at n + 1/2; step 2),

compute the fields at n + 1 from time step n + 1/2 where the first spatial difference

terms use the field values at time step n + 1. In both sub-steps, the target time step
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fields appear on both sides of the update equation; thus, this method yields an implicit

difference update scheme. Based on this principle, the ADI form of the UPML update

equation for lossy media is not difficult to derive. We used a symbolic software package,

MathematicaTM, to perform the derivations. The Mathematica codes for both sub-steps

can be found in Appendix A.

With this ADI technique, the time step size ∆t is not constrained by the CFL stabil-

ity condition (5.24); instead, the dispersion error becomes the major factor that limits

∆t. A detailed study on the impact on the dispersion error due to various ∆t’s in the

ADI FDTD is given by Zhao [206]. The unconditional stability of the ADI FDTD al-

lows for simultaneous use with the iterative FDTD approach introduced in the previous

subsection. A few reconstruction examples are presented in the results section.

To estimate the computational efficiency, the total flop number needs to be calcu-

lated for this method. Assuming the 3D grid size is Nx = Ny = Nz = N, the floating-

point operations per iteration for the ADI approach can be written as

FADI
iter ≈ 2N3(177 + 5 + 66) (5.34)

where the number “2” is due to the two sub-steps, “177” is derived from the operations

to assemble the RHS for the tri-diagonal equations for ~P, the “5” comes from the num-

ber of back substitutions required to solve for the tri-diagonal equations and the “66”

relates to the contributions of the remaining update equations. The total number of time

steps to reach steady-state for the ADI FDTD method can now be written as

FADI
steady =

CFLN
CFLNADI

Fsteady (5.35)

where Fsteady and CFLN are the steady time step and CFL number defined in (3.91)
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and (5.25), respectively. Combining (5.34) and (5.35), we get the total flop count for

the ADI FDTD with lossy UPML ABC as

FADI = FADI
steadyFADI

iter = 992
√

3N4 cmax

CFLNADI × cbk
(5.36)

From (5.36) and (5.28), in order to achieve faster computations, the CFL number for

the ADI FDTD should be at least 6 times that in the traditional FDTD.

5.2 3D microwave imaging system prototype

The illumination array for the new 3D data acquisition system consists of a 25 cm

diameter by 19.3 cm height Plexiglas cylinder and is shown in Figure 5.11. The 16

monopole antenna array is positioned on a 15 cm diameter concentric circle with the

antennas capable of traveling vertically a total of 11.4 cm. Note that we still utilize the

technique of allowing the rigid coaxes feeding the monopole antennas to pass through

hydraulic seals in the base of the tank facilitating partitioning of all the motors, array

plates and coaxial cables outside of the tank. The active part of the antenna consists of

a 3.8 cm length of exposed coaxial cable (both center conductor and surrounding di-

electric). The 16 antennas are segregated into two interleaved arrays of 8 antennas with

each sub-array being able to move independently from the other. The mounting plates

for the antenna sets are attached to separate pairs of opposing, computer controlled mo-

tors positioned underneath the tank. In this way, a single antenna can still transmit a

signal to all of the remaining 15 antennas within individual horizontal planes. How-

ever, this new arrangement now allows for a single antenna to transmit a signal that can

be received by 8 of the 15 receiver channels at different vertical positions. While this

does not facilitate acquisition of all cross plane transmit/receive pair permutations, the
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amount of new data is considerable and the trade-offs in terms of increased array posi-

tioning complexity versus the merits of acquiring the new 3D data and possibly being

able to reconstruct real 3D images were reasonable.

An additional innovation compared to the previous system involved incorporating

two NI4472 24 bit, 8 channel data acquisition boards. This allowed for the parallel

detection of all signals over the 140 dB dynamic range which is necessary in this system

because of the broad operating frequency range (500 - 3000 MHz) and the wide range

of propagation path distances between the antennas. The previous system utilized two

16 bit, 8 channel A/D boards which required a variable gain amplifier in front to achieve

the desired dynamic range. In addition, the new boards actually sample all 8 channels

simultaneously instead of multiplexing the channels into a single sampler circuit. These

new innovations have enabled us to maintain our excellent signal dynamic range while

greatly increasing the data acquisition speed. This is essential for the 3D system since

the increase in the amount of data that will be collected is substantial and we will want

to limit the breast exam times to as short as possible for patient comfort and to minimize

the possibility of patient motion artifacts.

5.3 Results

In this section, we present reconstructions from simulated data to assess the perfor-

mance of the proposed methods under ideal conditions. The computational efficiency

of the enhanced algorithm, such as incorporating initial field estimates and the ADI

FDTD were studied with the numerical simulations. More realistic reconstructions in-

volving simple 3D phantoms were performed with measurement data collected from

our 3D data acquisition system. Finally, we studied all five dual-mesh based algo-
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Figure 5.11: Photograph of the new illumination tank indicating the interleaved antenna
sub-arrays with the mounting plates and linear actuator motors.

rithms, as listed in Table 3.2 including the 2D and 3D algorithms, with benchmark

reconstructions to profile their computational complexity with respect to the incremen-

tal improvements in forward modelling accuracy.

In order to make reasonable comparisons across these approaches, we used a group

of common settings for all experiments unless otherwise noted. In the simulation cases,

the background medium used a 0.9% saline solution having εr = 77 and σ = 1.7 S/m.

The cylindrical reconstruction meshes for the two 3D methods are identical, comprised

of 1660 nodes and 7808 tetrahedron elements. In this case, the Cartesian coordinate

system origin is located at the center of the reconstruction mesh with the z-axis aligned

along cylinder axis. A circular antenna array located on a radius r = 7.62 cm com-

prised of 16 equally spaced monopole antennas operating at 900 MHz is placed on the

x − y plane centered at the origin. Each individual antenna is modelled by an infinitely

small z-oriented dipole. For cases where multiple layered antenna arrays are used, dia-

grams are provided to illustrate the positions of the antennas. For each iteration of the

Gauss-Newton reconstruction, a Tikhonov regularization is imposed with the regular-
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ization parameter computed by the empirical method discussed in Section 3.2.3. All

reconstructions started from an initial estimate equal to the homogeneous background

medium.

5.3.1 Simulated data reconstructions

The imaging target is an off-centered sphere (εr = 20, σ = 0.5 S/m) with center location

(x = 0.0 cm, y = −2.5 cm, z = 0.0 cm) and radius r = 2 cm. For the 3Ds/3D

reconstructions, the forward mesh is a cylinder consisting of 56,636 nodes and 312,453

tetrahedral elements. The mesh has radius r = 12 cm and extends vertically from

z = −5 cm to z = 5 cm. For the 3Dv/3D reconstructions, the interior grid has size

70× 70× 35 nodes and is surrounded by 5 layers of a UPML (the final node size of the

data array is 80 × 80 × 45). The FDTD cells are cubes with uniform node spacing of

∆x = ∆y = ∆z = 2.47 mm.

The simulated measurement data was generated using an FDTD 3D vector solution

over a much finer forward mesh (40 nodes per wavelength of the background medium

compared with 15 nodes per wavelength in the reconstruction problem) with the Ez

components extracted at the receiver sites.

Four antenna array configurations (as illustrated in Figure 5.12) were investigated.

The reconstructed 3D dielectric profiles from both scalar (for scheme A only) and vec-

tor methods are shown in Figures 5.13 to 5.17.

Several observations can be made from these images:

1. The permittivity images generally have less artifacts than their conductivity coun-

terparts, similar to that observed in Chapter 4. This demonstrates that the imaging

mechanism we are exploiting is more sensitive to permittivity variations.

2. The images reconstructed utilizing the scheme A antenna configuration from the
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(a) (b)

(c) (d)

Figure 5.12: Source configurations for 3D simulation reconstructions: (a) scheme A,
(b) scheme B, (c) scheme C, (d) scheme D. In each diagram, the bold circle represents
a transmitter and the solid circles represent the corresponding receivers for that spe-
cific transmitter. In scheme D, only the antennas on the central plane were used as
transmitters, while in the other schemes, all antennas operated as transmitters sequen-
tially. Additionally, scheme B and C are distinguished from each other by the fact that
in scheme B the receivers are only those antennas in the same plane as the transmitter
while the receivers in scheme C can be in either plane with respect to the transmitter
plane.
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Figure 5.13: Cross-sectional images of the reconstructed dielectric profiles using the
scheme A antenna configuration (3Ds/3D algorithm).
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Figure 5.14: Cross-sectional images of the reconstructed dielectric profiles using the
scheme A antenna configuration (3Dv/3D algorithm).
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Figure 5.15: Cross-sectional images of the reconstructed dielectric profiles using the
scheme B antenna configuration (3Dv/3D algorithm).
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Figure 5.16: Cross-sectional images of the reconstructed dielectric profiles using the
scheme C antenna configuration (3Dv/3D algorithm).
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Figure 5.17: Cross-sectional images of the reconstructed dielectric profiles using the
scheme D antenna configuration (3Dv/3D algorithm).

scalar method (3Ds/3D) have more artifacts above and below the object than the

corresponding images produced with 3Dv/3D method. In particular, the con-

ductivity component is overwhelmed by these artifacts and is unable to provide

useful information concerning the target.

3. The permittivity contours for the single-layer antenna array are relative accurate

in the plane where the antenna array is located. However, artifacts appear above

and below the object. The artifacts in the conductivity image are more noticeable

and distort the contour of the object in the z-direction.

4. From the images of the two-layer (32 sources, 32 transmitters and 18 receivers

per transmitter) and three-layer (48 sources, 16 transmitters and 27 receivers

per transmitter) antenna configurations, the conductivity image artifacts in the

z-direction above and below the target are significantly reduced compared to

the single plane images making the object generally appear more uniform. This
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demonstrates that more measurement data especially out-of-plane data is helpful

in improving the quality of the 3D reconstructions.

5. The images computed from scheme B have significant distortions in permittivity

component along z-axis while the conductivity profile is not fully reconstructed.

Even while the amount of measurement is doubled in this case compared with

just the single-layer case, the image quality is not as good as the latter.

For a further analysis of the artifacts observed in the results using scheme B, we

performed three more reconstructions. In the first reconstruction, we reduced the spac-

ing of the two antenna arrays from 3 cm to 2 cm. The reconstructed images for this

case are shown in Figure 5.18. In the second reconstruction, three antenna arrays sim-

ilar to scheme D were used while only the receivers in the transmitter plane acquired

measurement. The vertical space between the antenna arrays was 1 cm. The results

for this experiment are shown in Figure 5.19. The third experiment utilized a five-layer

antenna array with 1 cm spacing in z direction and the corresponding results are shown

in Figure 5.20. Similar to the previous two examples, only planar measurement were

collected. With each increase in data, the distortions in the z-axis of the permittivity

image (especially above and below the recovered object) are reduced compared with

the images in Figure 5.15. Significant artifacts can be observed above and below the

object in the conductivity images but they too are reduced with increased data. This

demonstrates that by utilizing measurements from multiple planar antenna arrays, we

can recover improved 3D images. Given that there is a significant amount of multi-

planar measurement data already acquired using our current clinical system (Section

3.7.4), the above finding indicates that we may be able to directly use these data set for

3D image reconstruction. Comparing the results from these cases and schemes C and

D, it is evident that the cross-layer measurement is more efficient in helping the recon-
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struction algorithm to recover the three-dimensional shape and location of the object,

but that utilizing multiple single-plane data sets should not be discounted.
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Figure 5.18: Cross-sectional images of the reconstructed dielectric profiles using two
antenna arrays with 2 cm spacing.
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Figure 5.19: Cross-sectional images of the reconstructed dielectric profiles using three
antenna arrays with 1 cm spacing.
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Figure 5.20: Cross-sectional images of the reconstructed dielectric profiles using five
antenna arrays with 1 cm spacing.

With the simulated data for scheme A, we also investigated the performance of var-

ious enhancements discussed in Section 5.1.6. First, as predicted, the Ty(2,4) FDTD

method did run slightly faster than the traditional 3D FDTD method due to the reduc-

tion in mesh size; however, the enhancement in efficiency was not significant. Second,

the computation time decrease from supplying an initial field distribution was signif-

icant. For the reconstructions using this technique, we first estimated the maximum

dielectric property at 1:5 with respect to the background and used CLFN=0.86 to com-

pute the time step value for all iterations. The values of all field vectors and the accu-

mulated time-steps were recorded starting from the second iteration and subsequently

supplied to all iterations. Meanwhile, we deliberately reduced the steady-state time

step number estimated from (3.91) by a factor of 2 or 3. Under these circumstances,

the reconstructed images show no obvious degradation. The relative errors of these

reduced computation time reconstructions are plotted with those from the unenhanced

version in Figure 5.21 which confirms the benefits of this technique. Finally, we used



5.3. Results 211

the ADI FDTD technique to evaluate the forward field computation for this example.

Unfortunately, due to the small density of the 3D mesh, the flexibility for increasing

the CLFNADI is not large. We found that when CLFNADI > 4, the dispersion error

in the solution significantly impacts the forward accuracy; consequently, the overall

reconstruction time with the ADI FDTD method did not improve.
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Figure 5.21: Relative error plot of the reconstructions with and without the initial field
estimates.

5.3.2 Measured data reconstructions

A phantom experiment involving two spherical objects was performed using our new

3D system described in Section 5.2. The background medium is 83% glycerin and the

spheres are made of solid bone/fat-like material with εr = 5 and σ = 0.2 S/m. A picture

of the experimental configuration is shown in Figure 5.22. In this experiment, two

circular antenna arrays, Group A and Group B, were translated independently along 16

positions along the z-axis in 0.5 cm increments, resulting in 16 × 16 = 256 total array

combinations. For each combination, each antenna transmitted a signal sequentially

while the remainder acted as receivers. This experiment was repeated at frequencies

from 500 MHz to 1100 MHz in 200 MHz increments. The total time for acquiring
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the full set of data took roughly two and a half hours. Although the measurement data

set is a large array, only a few positions worth of data at 900 MHz are used for these

reconstructions. These positions are indicated in Figure 5.23.

Figure 5.22: Experimental setup for the sphere phantom measurement.

Figure 5.23: Antenna sub-group positions for the 3D phantom experiments.

Five sets of data were used for the reconstructions including

1. Scheme 1: {9,9}

2. Scheme 2: {{9,7},{9,9},{9,11}}
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3. Scheme 3: {{9,7},{9,9},{9,11},{7,9},{11,9}}

4. Scheme 4: {{9,7},{9,8},{9,9},{9,10},{9,11}}

5. Scheme 5: {{9,5},{9,6},{9,7},{9,8},{9,9},{9,10},{9,11},{9,12},{9,13}}

where each pair of numbers represent the vertical position numbers for antenna group

A and B, respectively. The images recovered for the 3Ds/3D and 3Dv/3D methods are

shown in Figures 5.24 to 5.26 for the selected schemes.
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Figure 5.24: Contour slice images extracted from the results of 3D phantom experiment
reconstructions utilizing antenna scheme 1.
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Figure 5.25: Contour slice images extracted from the results of 3D phantom experiment
reconstructions utilizing antenna scheme 2.

From the reconstructed images, the recovered permittivity part of the object is more

accurate than the conductivity images with the objects being shifted slightly toward the
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Figure 5.26: Contour slice images extracted from the results of 3D phantom experiment
reconstructions utilizing antenna scheme 3.
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Figure 5.27: Contour slice images extracted from the results of 3D phantom experiment
reconstructions utilizing antenna scheme 4.
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Figure 5.28: Contour slice images extracted from the results of 3D phantom experiment
reconstructions utilizing antenna scheme 5.
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boundary. For scheme 1, which contains only measurement data from a single slice, the

large sphere was correctly reconstructed for both permittivity and conductivity images

while the small one is not obvious (This is reassuring since the small sphere is not

in this imaging plane). When incorporating some of the multi-slice measurement data

(schemes 2 through 5), both spheres were successfully recovered on the 3D permittivity

profiles. This reinforces the importance of utilizing cross-plane measurement data.

Notice that the smaller sphere in the permittivity images appears as a smoothed low

contrast object due to the filtering effect of the regularization. For the conductivity

images, artifacts appear to become more significant with more measurement data. More

analysis is required to assess why the conductivity images do not recover the object very

well.

5.3.3 Comparisons of all dual-mesh based algorithms

Using the simulation reconstructions (Section 5.3.1) as a benchmark, we tested all five

dual-mesh based methods and summarized the problem size and computational times

in Table 5.3.3.

From Table 5.3.3, we can clearly see trends when increasing the problem size along

with the transition from 2D to 3D reconstructions. In conjunction with this, due to the

implementations of various techniques proposed in this and the previous chapters, such

as iterative block solver, the FDTD technique and computation time enhancements as-

sociated with setting the initial fields, the forward computation time for all of these

methods is within an acceptable range even for the full 3D vector approach. Addition-

ally, when comparing the data from the first two columns, the use of the adjoint method

is essential for making these reconstruction algorithms viable.

In general, the 2D algorithms in Table 5.3.3 demonstrate advantages in terms of
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Table 5.1: Comparisons between dual-mesh based reconstructions
2Ds/2D+ 2Ds/2D 2DsFDTD/2D 3Ds/2D

forward method FE/BE FE/BE 2D FDTD 3D FE
forward mesh size 3,903 3,903 12,100 56,636

17,955*
recon. mesh size 556 556 473 126

forward time/source 1.8s 1.8s 1s(0.3s**) 5.5s(13s***)
solving for update 1̃h 16s 2s 0.5s

3Ds/3D 3Dv/3D 3Dv/3D++
forward method 3D FE 3D FDTD 3D FDTD

forward mesh size 56,636 108,000 108,000
196,000* 196,000*

recon. mesh size 1660 1660 1660
forward time/source 5.5s(13s) 9s(1-3s**) 5s
solving for update 4s 4s 4s
+ utilized sensitivity equation method to construct the Jacobian matrix
++ used the initial field acceleration technique(factor=2)
* total unknown size including the nodes in PML slabs
** used 4 CPU’s in parallel
*** without multiple-RHS option
Note: the forward field computation for 3Dv/3D algorithm uses single precision
storage which is twice faster than using double precision computation.

speed. For instance, the reconstruction time for 2DsFDTD/2D method is close that of

the actual data acquisition time and is promising in providing quasi-real-time image

reconstructions by further incorporating the ADI and initial field estimation techniques.

However, the image quality will need to be improved for the 3D cases utilizing actual

measured data (especially for the conductivity component) before these improvements

are fully realized.

For the 3D reconstructions, the scalar technique based on the FE method together

with the iterative block solver provide an efficient approach for modelling the 3D field

distribution with the understanding that the underlying scalar model imposes multiple

approximations. The 3D FDTD algorithm used in 3Dv/3D method is very promising

because of 1) the accuracy in field modelling, 2) the simplicity in programming and 3)

the flexibility in accommodating various optimizations as discussed in Section 5.1.6.

From Table 5.3.3, utilizing a mesh that is three times larger for the forward problem
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(considering the vector nature, the actual number of unknowns is much larger than

that for the scalar problem), the 3D FDTD method can still compute the full vector

solution within 9 seconds which is less than twice that of the scalar technique. With

the rapid increase in computing power, the use of vector techniques such as the FDTD

method becomes increasingly important for producing accurate field representations

and consequently improves the overall image quality.

5.4 Discussions and conclusions

We have developed two 3D image reconstruction algorithms in this chapter including

the 3D scalar forward field/3D reconstruction method based on the FE technique and

the 3D vector forward field/3D reconstruction method based on the FDTD technique.

The forward models and assumptions of both techniques were discussed with emphasis

on the 3D FDTD method. The adjoint method devised in the previous chapter was

further extended to a nodal-based approximate formula which significantly simplifies

the pre-processing computation stage of the reconstruction along with an associated

reduction in computation time. Several enhancements of the 3D FDTD method applied

to the image reconstruction problem were investigated including the use of a high-order

difference scheme, initial field estimates and the ADI FDTD method.

Reconstructions utilizing both simulated and measured data were performed to val-

idate the proposed algorithms. For most cases, the target objects were successfully

reconstructed in both location and dielectric property values. Generally, the permit-

tivity images have fewer artifacts than for the conductivity images. The high level of

conductivity artifacts in the phantom data reconstructions may indicate a model-data

mismatch or diminished system signal-to-noise which may not be fully appreciated at
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this time.

Finally, we compared the series of algorithms we have developed utilizing the dual-

mesh and iterative reconstruction framework. The 2D algorithms are superior in speed

and the 3D algorithms are generally superior in accuracy. Among the 2D algorithms,

the 2D FDTD based technique is quite promising and might facilitate quasi-real-time

imaging. Sufficient measurement data, especially the cross-plane measurement data,

has been shown to be essential for the 3D reconstructions. Consequently, the computa-

tional expenses in 3D are significantly greater than for the 2D cases and the computation

speed enhancements in the forward modelling are necessary for practical use of these

algorithms.

The investigations into the 3D image reconstruction algorithm and data acquisition

system are still quite preliminary and there is significant work to be done in order to

make them useful. Further studies of 3D microwave imaging include the further reduc-

tions in the forward and reconstruction computation time, improvements in the DAQ

system performance and improved match between the numerical model and measured

data from data acquisition system.



Chapter 6

Multiple-frequency dispersion

reconstruction algorithm

A multiple frequency dispersion reconstruction (MFDR) algorithm utilizing a Gauss-

Newton iterative strategy is presented for microwave imaging in this chapter. This

algorithm facilitates the simultaneous use of multiple frequency measurement data in a

single image reconstruction. Using the stabilizing effects of the low frequency measure-

ment data, higher frequency data can be included to reconstruct images with improved

resolution. The parameters reconstructed in this implementation are now frequency in-

dependent dispersion coefficients instead of the actual properties and may provide new

diagnostic information. In this chapter, large high-contrast objects are successfully con-

structed utilizing assumed simple dispersion models for both simulation and phantom

cases for which the traditional single frequency algorithm previously failed. Consis-

tent improvement in image quality can be observed by involving more frequencies in

the reconstruction; however, there appears to be a limit to how closely spaced the fre-

quencies can be chosen while still providing independent new information which will

be explored in the next chapter. Possibilities for fine-tuning the image reconstruction

219
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performance in this context include 1) variations of the assumed dispersion model, and

2) Jacobian matrix column and row weighting schemes. Techniques for further reduc-

ing the forward solution computation time using time-domain solvers are also briefly

discussed. The proposed dispersion reconstruction technique is quite general and can

also be utilized in conjunction with other Gauss-Newton based algorithms including

the log-magnitude phase-form (LMPF) algorithm.

6.1 Introduction

As introduced in the preceding chapters, our data acquisition and image reconstruction

strategy involves collection of data at receiver sites about the imaging zone associated

with multiple electromagnetic illuminations similarly to other tomographic microwave

imaging techniques. In most cases, the reconstructed images generally improve with

increased amounts of measured data [67]. The existing reconstruction algorithms have

usually only been applied utilizing single operating frequencies with the lower fre-

quency reconstructed images appearing smoother and with less detail but also exhibit-

ing more stable convergence behavior to a viable solution compared with the less stable

higher frequency cases (a further discussion on the impact of operating frequency to

image reconstruction can be found in Section 7.4). However, increasing the amount of

data through reconstructions utilizing data from multiple frequency (MF) illuminations

could prove to be a powerful way to improve the image quality.

Unlike the frequency-hopping approach of Chew and Lin [33] and the multi-frequency

work of Haddadin et al. [72], in which the spectral data were applied sequentially,

we have developed a multi-frequency approach where the spectral data simultaneously

contribute to a single image reconstruction. The following sections discuss the im-
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plementation of this approach along with possible characteristic relationships for the

permittivity and conductivity frequency dispersions. A parameter scaling approach

is also discussed since scaling of the recovered dispersion coefficients is a consider-

ably different problem than just scaling the electrical properties for a single frequency

problem [129]. The results section illustrates the strength of this algorithm in three

challenging cases: two simulations and an analogous phantom experiment. The large

high-contrast object imaging cases were chosen because the standard, single frequency

algorithm converged to non-useful images for the higher frequency cases and produced

only very smoothed images for the lower frequency reconstructions. Only by using the

combination of data from both the lower and higher frequencies was the algorithm able

to recover well-resolved images of the targets.

6.2 Theory

6.2.1 Multiple frequency dispersion reconstruction algorithm

Assuming time dependence of exp( jωt), the complex wave number squared, k2, for

non-magnetic isotropic media can be written as

k2 = ω2µ0ε(ω)
= ω2µ0

(

εr(ω)ε0 − jσ(ω)
ω

)

= k2
R − jk2

I

(6.1)

where ω is the angular frequency, and k2
R = ω

2µ0ε0εr(ω) and k2
I = ωµ0σ(ω) are the real

and imaginary constituents of k2.

Multiple dispersion models exist with varying degrees of complexity and appropri-

ateness [36, 59, 43, 87]. For the microwave frequencies we are most interested, the

frequency range is generally well within the range between the dipolar and atomic re-
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laxation frequencies, such that the property variations are smooth and well-behaviored.

Without loss of generality, we can express the dispersion relationships in terms of non-

dispersive coefficients as

εr(ω) = εr (ω, λ1, λ2, · · · , λM)
σ(ω) = σ (ω, γ1, γ2, · · · , γN)

(6.2)

where λi (i = 1, 2, · · · , M) and γi (i = 1, 2, · · · , N) are the frequency indepen-

dent dispersion coefficients for the M and N term relationships, εr(ω) and σ(ω), re-

spectively.

The Gauss-Newton’s method assumes (from a truncated Taylor series with respect

to k2
R and k2

I ) [96]
∆ER =

∂ER
∂k2

R
∆k2

R +
∂ER
∂k2

I
∆k2

I

∆EI =
∂EI
∂k2

R
∆k2

R +
∂EI
∂k2

I
∆k2

I
(6.3)

where vectors ∆ER and ∆EI are the real and imaginary part of the difference between

measured and calculated fields, respectively. The lengths of vectors ∆ER and ∆EI are

equal to the total measurement data TR = T × R, where T denotes the number of

transmitters and R denotes the number of receivers per transmitter. Vectors k2
R and k2

I

are length P, which is the number of unknown property parameters. The derivative

terms in (6.3) are all matrices of size TR × P. Combining equations (6.1), (6.2) and

(6.3), applying the chain rule and assuming single frequency operation initially yields

∆ER =
M
∑

i=1

∂ER
∂k2

R

∂k2
R
∂λi
∆λi +

N
∑

i=1

∂ER
∂k2

I

∂k2
I
∂γi
∆γi

∆EI =
M
∑

i=1

∂EI
∂k2

R

∂k2
R
∂λi
∆λi +

N
∑

i=1

∂EI
∂k2

I

∂k2
I
∂γi
∆γi

(6.4)
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which can subsequently be written in matrix form
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The components of the Jacobian matrix J are

JR
R =

(

∂ER

∂k2
R

∂k2
R

∂λ1

∂ER

∂k2
R

∂k2
R

∂λ2
· · · ∂ER

∂k2
R

∂k2
R

∂λM

)

JR
I =

(

∂ER

∂k2
I

∂k2
I

∂γ1

∂ER

∂k2
I

∂k2
I

∂γ2
· · · ∂ER

∂k2
I

∂k2
I

∂γN

)

with J I
R and J I

I having corresponding definitions. JR
R and JI

R are submatrices with dimen-

sions (TR)×(P × M) whereas JR
I and J I

I are (TR)×(P × N). ∆l = (∆λ1, ∆λ2, · · · , ∆λM)T ,

and ∆g = (∆γ1, ∆γ2, · · · , ∆γN)T are the frequency independent property updates solved

for at each iteration. By solving equation (6.5) at each iteration, the dispersion coeffi-

cient lists, i.e. (λ1, λ2, · · · , λM) and (γ1, γ2, · · · , γN), can be updated by

(λ1, λ2, · · · , λM)s+1 = (λ1, λ2, · · · , λM)s + ∆lT
s

(γ1, γ2, · · · , γN)s+1 = (γ1, γ2, · · · , γN)s + ∆gT
s

(6.6)

where s is the iteration index. Essentially, the images are comprised of the dispersion

coefficient distributions. As before, the dielectric profiles at any specified frequency in

the investigating band can be readily calculated from equation (6.2). Additionally, the

reconstructed dispersion coefficients themselves might provide new diagnostic infor-

mation by capturing the dispersion signature of the tissues over a range of frequencies.

For a given dispersion relationship, the terms ∂k2

∂λi
and ∂k2

∂γi
in (6.4) can be computed

analytically. The details for deriving ∂E
∂k2 can be found in Section 4.1.2.

Since ∆l and ∆g are frequency independent, equation (6.5) can be generalized to F
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frequencies by expanding the Jacobian matrix on the left and electric field difference

vector on the right
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Note that the Jacobian matrix and ∆E terms are now functions of frequency. Equa-

tion (6.7) is the generic form for MFDR and is valid for both 2-D and 3-D cases since

the dispersion characteristics for an isotropic medium are dimensionless. It is also

valid for vector or scalar forward models with dispersive or non-dispersive medium.

Additionally, the MFDR technique can be combined, without loss of generality, with

the log-magnitude/phase form (LMPF) approach which was discussed in Section 3.2.3.

The MFDR expression for the LMPF algorithm is
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(6.8)

where Γ andΦ symbolize the log-magnitude and unwrapped phase of the electric fields,
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respectively. In this situation, the modified Jacobian terms can be expressed as

JΓR =
ER JR

R+EI JI
R

E2
R+E2

I

JΓI =
ER JR

I +EI JI
I

E2
R+E2

I

JΦR =
ER JI

R−EI JR
R

E2
R+E2

I

JΦI =
ER JI

I−EI JR
I

E2
R+E2

I

(6.9)

JΓ and JΦ are Jacobian submatrices. ∆Γ (E(ω)), where ∆Γ (E(ω)) = ln (Emeas(ω)) −

ln
(

Ecalc(ω)
)

are the differences in log-amplitude between measured and calculated

field values at the receivers, and ∆Φ (E(ω)), where ∆Φ (E(ω)) = arg (Emeas(ω)) −

arg
(

Ecalc(ω)
)

, are the differences in unwrapped phases [151]. In practice, the Gauss-

Newton algorithms described in equations (6.7) and (6.8) are ill-posed and can only be

successfully used by applying appropriate regularization techniques [191, 23, 126].

6.2.2 Dispersion model

The electrical property dispersion relationships can vary significantly from one material

to another. Accurate characterization over a large frequency spectrum such as 10 MHz

100 GHz is quite difficult due to multiple relaxations mechanisms [54]. Fortunately,

within a narrower microwave frequency band used in medical microwave imaging, most

biological tissue and coupling media investigated to date [171, 128] follow a smooth

characteristic function enabling us to utilize simple functional representations. The

linear model is the most straightforward case where an individual electrical property

can be represented in a two term expression as

ϑ(ω) = αw + β (6.10)

where ϑ can be either εr (or σ) or ln (εr) (or ln (σ)); w represents either ω or ln(ω) and
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α and β are linear coefficients. The use of the logarithm function allows us to assume

linear-linear, log-linear, linear-log or log-log relationships, respectively. For example,

εr(ω) = α ln(ω)+β is referred as the log-linear model. For sufficiently narrow frequency

intervals, the linear-linear model is quite often a good approximation. The traditional

single frequency reconstruction can be regarded as a limiting case of the linear-linear

MFDR algorithm where α is simply set to zero.

Important factors to consider when choosing an appropriate frequency dispersion

model for the image reconstruction algorithm include:

1. the dispersion model will be applied identically to all materials in the imaging

zone. For this type of imaging, a priori knowledge concerning the dispersion

characteristics of the target and medium may be useful, and

2. the MFDR algorithm is general enough to accommodate more complicated dis-

persion models than those suggested above. Such a model could be utilized for a

variety of complex relationships over a large frequency range; however, the con-

sequences would include reconstructing more unknowns which could increase

the possibility of convergence instability.

6.2.3 Row and column weighting

From a statistical perspective, the optimal strategy to scale the linear equations (6.7)

and (6.8) requires one to know the statistical properties of both the measurement and

the unknowns to be reconstructed. In other words, the covariance matrices W and U in

(2.53) should be known prior to the reconstruction. In general, W can be determined

from the measurement data. Since the unknown parameters are treated as nonstochastic

quantities, U can be replaced by the identity matrix.
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However, choosing non-identity weighting matrices in the reconstruction was found

to have numerical significance in the reconstruction which could provide more balanced

images and minimize numerical noise. For example, we have previously explored a pa-

rameter scaling approach to balance the influence of the permittivity parameters to their

associated conductivity values [129]. This scaling approach falls under the general

heading of matrix row and column weighting [67, 105] in solving least-square prob-

lems. As we progress to reconstructing the dispersion coefficients themselves instead

of the actual properties, the parameter scaling clearly becomes more complex given the

fact that the reconstruction itself is ill-posed and nonlinear in nature. In general, the

weighted system of equations can be written in the form

(DRADC)
(

D−1
C x

)

= (DRb) (6.11)

where DR and DC are the row and column diagonal weighting matrices, and A, x and b

are the conventional left-hand-side (LHS) matrix, unknown and right-hand-side (RHS)

vectors, respectively (where the equation Ax = b is formed from either equations (6.7)

or (6.8). In this case, A is the Jacobian matrix and x is the same unknown vector

as in (6.7) and (6.8)). For the problems described in equations (6.7) and (6.8), the

dimensions of A, x and b are (2TR×F)× (P×M +P×N), P× (M+N), and (2TR×F),

respectively. In equation (6.11), the problem is initially solved for the least square

solution of
(

D−1
C x

)

instead of simply x from which x can then eventually be computed

through multiplication by DC

x = DC
(

D−1
C x

)

LS
(6.12)

For linear least square problems, Sluis [196] showed that when the diagonal matrix DC
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is given by

DC = diag{1/||ai||2, 1/||a2||2, · · · , 1/||aN ||2} (6.13)

where ai are the column vectors of A. the condition number of the scaled LHS matrix

is maximum.

We can also deliberately tweak the reconstruction equation by these scaling mech-

anisms. For example, by setting DR, we can form a weighted least-square problem

through which the weights of the measurement data at different frequencies or weights

between log-magnitude and phase can be explicitly set depending on the problem needs.

6.2.4 Time-domain forward computation

As was demonstrated in the preceding chapters, the most significant computational time

expense for a Gauss-Newton iterative approach (utilizing the adjoint technique) is the

calculation of the forward electric field solutions at each iteration. Utilizing the previ-

ously developed frequency domain technique [151, 127], implementation of the MFDR

approach would increase the computation time linearly based on the number of frequen-

cies used. However, implementation of a time-domain electric field forward solution

can offer significant benefits because the required multiple frequency solutions can be

extracted from a single time-domain solution. In practice, the FDTD approach utilizing

a differential Gaussian pulse could be used to generate the time domain response. The

pulses would be applied individually at each transmitting antenna followed by a fast

Fourier transform (FFT) of the signal responses at each receiver to recover the associ-

ated single frequency response. While the computation time for performing the Fourier

transformations is not insignificant, it still constitutes a considerable time savings com-

pared to solving multiple frequency domain forward solutions at each frequency (i.e.

computing numerous matrix back substitutions). For a typical reconstruction problem
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size, a factor of roughly 2 in computation time reduction is achieved by using the time-

domain/FFT approach when 5 frequencies are applied. For this analysis, the main as-

sumption is that the dielectric properties are constant with frequency. For more realistic

dispersive of the dielectric property relationships, one may choose more sophisticated

FDTD algorithms as discussed in [101].

6.3 Results

In this section, we present three examples to illustrate image reconstruction improve-

ments utilizing this technique. These examples focus on 2-D reconstructions utilizing

transverse-magnetic (TM) microwave illuminations. Sixteen monopole antennas are

positioned equally about the perimeter on a 15 cm diameter circle. The data sets con-

sist of electric field measurements at all 15 receivers for a given transmitting antenna

with the target region being illuminated sequentially by each of the 16 antennas indi-

vidually.

For all forward calculations including the generation of simulated measurements

in example 1, the 2D FDTD approach introduced in Chapter 3 is used with a GPML

boundary condition for truncating the mesh. The grid size for the forward domain is

110×110 for a total size of 18.8 cm×18.8 cm surrounded by 12 layers of the GPML. For

each excitation, a monochromatic wave is applied at the location of each antenna. The

dual-mesh settings of these reconstructions are described in Section 3.6. The circular

parameter mesh consists of 281 nodes with 524 associated linear triangular elements

concentrically placed within the antenna array.

The reconstruction algorithm utilizes the Tikhonov regularized Gauss-Newton method

discussed in Chapter 3. The algorithm was allowed to proceed 30 iterations in example
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1 and 20 iterations for example 2. Recognizing that the output of the MFDR algorithm

is a set of dispersion coefficient distributions which by themselves do not actually have

physical meaning, we have interpolated all results to the dielectric profiles at 900 MHz

based on the selected dispersion model for all cases, unless otherwise noted, to simplify

the comparisons.

The first example is a simulation of a large/high-contrast, two-region object con-

sisting of frequency varying materials to mimic a breast with a large inclusion. This

example is intended to demonstrate the performance of MFDR under ideal conditions.

In addition to the first example, we present a second simulation which exploits the

notion of visualizing the dispersion coefficients directly to enhance the low-contrast

object recovery. In the third example, we reconstruct images of a cylindrical molasses

phantom with a saline inclusion from actual measured data. The measurement data

is acquired using the prototype system described in [122] with a background medium

comprised of a 50:50 glycerin:water mixture [128]. The relative permittivities and con-

ductivities of the background, object and inclusion were measured using an HP85070B

dielectric probe kit in conjunction with an HP8753C Network Analyzer.

A log-log dispersion model was chosen for both the simulation and the reconstruc-

tion of the molasses phantom from actual measurement data. All reconstructions were

initialized as a homogeneous domain with the actual background dispersion coeffi-

cients. Before starting the process, a least squared regression process was used to

establish the dispersion coefficients of the background permittivity and conductivity

from actual probe measurements. All computations were performed on a Compaq Al-

phaServer 833 MHz ES40 workstation. The computation time for each iteration in-

cluded roughly 3 seconds per frequency to calculate the forward field solutions for 16

transmitting antennas using 4 CPU’s in parallel and roughly 1 second to solve for the
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dispersion coefficient update vector on a single CPU.

6.3.1 Simulation experiments

A 10.2 cm diameter cylindrical object with a 3.0 cm diameter inclusion located in the

lower left quadrant is used in the simulation. Properties equivalent to that of 0.9% saline

are used as the background coupling medium to generate a high contrast imaging prob-

lem that would normally be difficult to reconstruct in a single frequency scheme. The

properties for the object and inclusion roughly mimic that for breast fat and glandular

tissue, respectively [171]. The property dispersion curves for the background, object

and inclusion used in this simulation are plotted in Figure 6.1.
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Figure 6.1: Simulated dispersion curves for the materials used in the simulation (a)
relative permittivity, (b) conductivity.

Figure 6.2 shows the recovered relative permittivity and conductivity images for

several single and multiple frequency reconstructions utilizing the log-log dispersion

model. While the 300 MHz case converges to a stable image, the properties are quite

smoothed over the domain (the inclusion appears only as an indentation in the object

perimeter) as would be expected because of the reduced resolution associated with the

lower frequencies. For both higher, single frequency cases (600 and 900 MHz), the
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images have clearly converged to non-interesting solutions suggesting that the mea-

surement data in these two cases individually do not contain sufficient information to

recover stable images. The two frequency case utilizing 300 and 600 MHz recovers

an accurate representation of the phantom with the inclusion more accurately defined

than for the 300 MHz case alone while a similar two frequency case using 600 and

900 MHz cannot recover a useful image. It is clear that the algorithm benefits from

both the stabilizing effects of the lower frequency data along with the higher resolution

capabilities of the higher frequency reconstruction. The images for the three (300, 600

and 900 MHz) and four (300, 500, 700 and 900 MHz) frequency cases converge to sim-

ilar solutions to that of the combined 300 and 600 MHz case suggesting again that the

300 MHz data is vital for convergence stability but that the increased higher frequency

data has diminished impact.

Figure 6.3 illustrates the RMS error (eRMS ) between the true and recovered electrical

property values as a function of iteration number for the seven cases discussed above.

eRMS is defined as

eRMS =

√

∑P
i=1

(

ϑtrue
i − ϑrecon

i

)2

P (6.14)

where ϑ stands for either εr or σ and P is the number of reconstruction parameters.

These are also plotted for the dispersion relationship defined 900 MHz values. Similar

to the qualitative results in Figure 6.2, eRMS does not decrease significantly for either the

εr or σ cases with iteration for either the 600, 900 or 600/900 MHz cases which would

be expected since all of the images in these cases converge to non-interesting solutions.

Of the remaining cases, the 300 MHz error plots converge to the highest values for

both εr and σ which would also be expected since these are the least spatially resolved.

The remaining three converge to nearly the same σ error value; however, the three and

four frequency reconstructions converge to a slightly improved εr error compared with
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Figure 6.2: Reconstructed permittivity and conductivity images of a 10.2 cm diameter
breast-like object with a 3.0 cm diameter tumor-like inclusion at (a) 300 MHz, (b)
600 MHz, (c) 900 MHz, (d) 600/900 MHz, (e) 300/600 MHz, (f) 300/600/900 MHz,
(g) 300/500/700/900 MHz using simulated data.
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Figure 6.3: Plots of the (a) εr and (b) σ RMS errors between the actual and recovered
properties as a function of iteration for all seven imaging cases shown in Figure 6.2.
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the 300/600 MHz case. This suggests that the addition of more frequency data does

improve the images somewhat but that increasing the amount of data beyond the three

frequency sets in this situation has minimal impact.

The previous example shows the advantages of MFDR in a high-contrast image re-

construction situation; however, the approach also works well in lower contrast cases.

In this particular low contrast case, the object is difficult to distinguish from dielec-

tric images at individual frequencies while its dispersion characteristics might provide

significant contrast from that of the background which can be exploited by MFDR. For

this example, we removed the 10.2cm diameter object from the previous case and retain

the inclusion. The inclusion and background media were characterized by a linear-log

dispersion model: permittivity (a) background, αεr = −6.98 × 10−11, βεr = 3.70, (b)

inclusion, αεr = 9.67E × 10−11, βεr = 2.85 (Note that the signs of the dispersion slopes

are opposite for the background and inclusion). For the conductivity component, the

inclusion and background are identical having ασ = 8.41 × 10−11, βσ = −0.662. The

permittivity dispersion curves of the inclusion and background are plotted in Figure

6.4 (a). Using the LMPF-MFDR reconstruction with simulated measurement data at

600/900 MHz, αεr , βεr and conductivity dispersion coefficients were successfully recon-

structed. The recovered αεr image (Figure 6.4 (b)) clearly shows the distinct dispersion

characteristics of the inclusion. Based on the dispersion model, equation (6.10), the

permittivity distributions were also computed at 600 MHz and 900 MHz and shown in

Figure 6.4 (c) and (d). The inverted contrast of the object relative to the background

can be observed as the result of the dispersion reconstruction.
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Figure 6.4: Direct utilization of dispersion coefficients: (a) relative permittivity disper-
sion curves, (b) reconstructed αεr , (c) computed εr at 600 MHz and (d) 900 MHz.

6.3.2 Phantom experiments

For this experiment, the imaging target was a 10.1 cm diameter cylinder of molasses

with a 3.1 cm diameter 0.9% saline inclusion offset upwards within the molasses. The

entire molasses cylinder was positioned 0.6 cm upwards from the center of the array

and is surrounded by a background medium comprised of 50% Glycerin and 50% water.

The electrical properties of the three liquids are plotted versus frequency in Figure 6.5.
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Figure 6.5: Measured electrical properties for the materials used in the phantom exper-
iment: (a) relative permittivity, (b) conductivity.
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Figure 6.6 shows the reconstructed images for the phantom utilizing various combi-

nations of single and multiple frequency data sets. Similar to the first simulation case,

the εr image for the 500 MHz case shows the rough outline of the cylinder with an

indentation near its top surface corresponding to the saline inclusion. The recovered

object in the associated conductivity image is smaller in size than its permittivity coun-

terpart (similar to the observations in Chapter 4 and 5) with no apparent indication of

any inclusion. The property values are nominally correct and the least squared electric

field error (LSE) plot does not suggest that this solution has diverged (Figure 6.7). Sim-

ilar to the simulation cases in Section 6.3.1, the higher frequency case (900 MHz) has

converged to a non-interesting image. The two multi-frequency cases have converged

to significantly better resolved images compared with the 500 MHz case. In both cases

the outline of the molasses phantom is clearly defined in both permittivity and conduc-

tivity images with the location of the inclusion consistently more accurately recovered

in the permittivity component. Additionally, the property distribution of the molasses

appears to be more uniform and the recovered values of the inclusion are more accu-

rate for the three frequency case. We also utilized the linear-linear dispersion model

to reconstruct this phantom, the results are shown in 6.8. These images are similar to

those in Figure 6.6 but the quality of the images is slightly worse, especially for the

conductivity images.

6.4 Discussions and conclusions

We have developed a dispersion characteristic reconstruction technique which facili-

tates the synergy of multiple frequency measurements into a single image reconstruc-

tion process. Utilization of lower frequency data alone can often produce low resolution
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Figure 6.6: Reconstructed permittivity and conductivity images of a 10.1 cm diame-
ter cylinder of molasses with a 3.1 cm diameter saline inclusion at (a) 500 MHz, (b)
900 MHz, (c) 500/900 MHz, (d) 300/500/900 MHz using measurement data (assuming
log-log dispersion relationship).
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Figure 6.7: Relative error curves for the phantom reconstructions at various frequen-
cies.

images in a stable manner while reconstructions using higher frequency data alone (es-

pecially when imaging large, high contrast objects such as the breast) often result in

non-meaningful results. For the algorithms presented here, we simultaneously utilize

measurement data over a broad frequency range and recover frequency independent co-

efficients associated with assumed underlying property dispersion relationships. While

images at discrete frequencies can be extracted by applying the dispersion relation-

ships after the reconstruction is processed, the dispersion coefficients themselves may

provide additional diagnostic information.

We specifically chose imaging problems for large, high-contrast objects to demon-

strate the capabilities of this approach; that is the single frequency algorithm was known

to diverge for the higher frequency cases without the assistance of a priori information.

In both simulations and phantom experiments, it is clear that we can only utilize the

higher frequency data when combined with that for a lower frequency. In addition, as

the amount of higher frequency data is increased, there is a slight improvement in the

image quality. While we would naturally expect resolution improvement whenever any

new data is added, the level of independence of the new data from the existing data may
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Figure 6.8: Reconstructed permittivity and conductivity images of a 10.1 cm diame-
ter cylinder of molasses with a 3.1 cm diameter saline inclusion at (a) 500 MHz, (b)
900 MHz, (c) 500/900 MHz, (d) 300/500/900 MHz using measurement data (assuming
linear-linear dispersion relationship).
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be compromised when the selected frequencies are closely packed. This will be an im-

portant point of further investigation as we work towards utilizing the higher frequency

(up to 2.5 GHz) data available with our new data acquisition system [111].

Additionally, there remain several techniques by which the performance of this ap-

proach can be fine-tuned. As we work towards the development of a lower contrast

coupling medium for our breast imaging system, the single frequency algorithm can

often recover a stable image, even at higher frequencies because of the lower contrast.

It will be important to study the effects of the dispersion model choice, along with the

amount and span of the additional frequency information in conjunction with existing

reconstruction enhancement capabilities such as row and column weighting and our

2-step regularization approach [126] to optimize the system resolution.





Chapter 7

Singular value analysis of the Jacobian

matrix

7.1 Introduction

The update equation (3.17) plays a central role in the reconstruction process of the

dielectric properties. The significance of this equation lies in the fact that the final

image of the reconstruction is directly comprised of the solutions yielded from this

equation at a sequence of iterations. In the cases where the forward field is linearly

dependent on the parameters, this equation leads to the final solution instantly. The

measurement data, parameter update and the sensitivity map in terms of the Jacobian

matrix are all components of this equation which along with any a priori information

complete the ingredients for the image reconstruction. Moreover, as a matrix equation,

(3.17) is comparatively easy to solve and analyze. Therefore, a thorough analysis of

this equation, especially the Jacobian matrix, is of great importance in explaining the

behavior of the reconstructor and estimating the performance of the imaging system.

More importantly, these understandings could be useful in assisting the optimization of
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the measurement system to maximize overall efficiency.

The principal questions we are interested in exploring with this analysis include

1. Is there a metric that reasonably characterizes the performance of a imaging

scheme?

2. What is the resolution limit of the microwave imaging system and what factors

impact the resolution?

3. How does the measurement noise effect the image reconstruction?

4. Given the measurement scheme, what are the optimal system parameters (such

as operating frequency, source/detector number and distribution, etc.) that yield

the best image quality?

From a linear equation perspective, the singular value decomposition on the LHS

matrix in (3.17) is promising as a way to assist in answering the first question because

of the rich information exposed by the SVD. In the remainder of this chapter, we focus

on constructing the singular value decomposition (SVD) of the Jacobian matrix from

which the analysis of the image resolution and the impact of the measurement noise

are performed. For this purpose, we develop a metric in terms of the singular value

spectrum and use it to explore the optimal imaging system configurations.

Temporarily ignoring the regularization term and various statistical assumptions,

(3.17) is mathematically equivalent to the following equation

J(k2 − k2
0) = E − Emeas (7.1)

where J is the Jacobian matrix defined in (2.21). Although the reconstruction of a high-

contrast object in microwave imaging can not be completed by solving this equation in
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a single step, the single step solution of (7.1) provides certain measures related to the

recoverability of the algorithm in a linear functional sense. Therefore, investigating the

single step solution, or the solution under the Born approximation, is valuable for an

in-depth understanding of the reconstruction algorithm.

The single step reconstruction using a homogeneous background initial guess and

far field assumption (Section 2.2) was studied by Brander and DeFacio [19]. In their

study, the SVD analysis of the discretized forward operator referred as to the Born

matrix is performed but with a quite general description. For our derivations, we ap-

proach the analysis of the near field, single-step reconstruction from the perspective of

the nodal adjoint method. In this assessment, we compute the analytical SVD for the

nodal adjoint form of the Jacobian matrix similarly to the analytical work performed

by Nelson and Kahana [141] for the acoustic scattering problem. Various issues con-

cerning the image resolution and noise are then subsequently investigated based on this

decomposition.

7.2 Analytical SVD of the Jacobian matrix

The nodal adjoint formula (5.8) provides a simple but meaningful representation for the

Jacobian matrix. With a uniform single-mesh, i.e. the forward and parameter meshes

are identical, where the nodes inside the mesh are evenly distributed, (for each node,

their effective volumes Vn (n = 1, · · · , P) are approximately identical, denoted as V),

the Jacobian matrix can be written in the following form (defined in Section 5.1.2)

J = VB (7.2)
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where the ((s, r),τ)-th element of matrix B is given by

b(s,r),τ = E(~rτ,~rs)Ê(~rτ,~rr) (7.3)

where (s, r) represents a transmitter/receiver pair with s being the index of the source,

r being the index of the receiver, τ is the index of the parameter and E(~rτ,~rs) and

Ê(~rτ,~rr) are the electric fields at node τ due to sources at either s or r, respectively. For

simplicity, we use a single index ν to access all possible (s, r) pairs and a one-to-one

mapping is established denoted as ν : {1, 2, · · · ,Q} → (s, r) where Q is the total number

of the combinations. Thus, (7.3) can be re-written as

bν,τ = E(~rτ,~rν:s)Ê(~rτ,~rν:r) (7.4)

where ν : s and ν : r are the corresponding source and receiver indices in the ν-th pair,

respectively.

For the microwave imaging case, the receivers and sources are both point sources,

therefore, the field Es and Êr can be expressed in terms of Green’s functions, i.e.

E(~r,~rν:s) = α × g(~r,~rν:s)
Ê(~r,~rν:r) = g(~r,~rν:r)

(7.5)

where α is a constant denoting the source strength. Substituting (7.5) into (7.3) and

subsequently into (7.2), the Jacobian can be expressed as

J = αV
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(7.6)
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It is interesting to note, from (7.6), the curves satisfying

g(~r,~rs)g(~r,~rr) = c (7.7)

can be generated for different constants c which depict isocurves (or isosurfaces) with

respect to the sensitivity to the parameter perturbation. For certain special cases, we

have plotted the iso-sensitivity curves and surfaces in the Appendix.

In order to decompose the matrix in (7.6), the approach by Nelson and Kahana is

applied [141]. First, we assume that there exist two sets of orthogonal basis functions,

one for the spatial domain where the unknown parameters are located, i.e. the parameter

space, and one for the space where the source/receiver antennas are located, i.e. the

excitation space. We denote the orthonormal basis for the parameter space as {ϕi(~rτ)}

and the orthonormal basis for excitation space as {φi(~rs,~rr)}. Thus, we can expand each

element of the matrix in (7.6) into the following form

g(~rτ,~rν:s)g(~rτ,~rν:r) =
∞
∑

m=0

∞
∑

n=0
λn

mϕm(~rτ)φn(~rν:s,~rν:r) (7.8)

where λn
m are the coefficients.

Once again, all (m, n) pairs are denoted by a single index κ such that abs(λκ) are

sorted in non-decreasing order. Assuming the summation over the first K terms of

the expansion is sufficiently accurate to represent the original function, the truncated

expansion is then written as

g(~rτ,~rν:s)g(~rτ,~rν:r) ≈
K

∑

κ=1
λκϕκ:m(~rτ)φκ:n(~rν:s,~rν:r) (7.9)

Nelson and Kahana [141, 142] demonstrated that once the expansion (7.9) is con-
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structed, matrix J can be decomposed into the following form

J = FΛHT (7.10)

where

F =
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The dimensions of these matrices are: K × K for Λ, Q × K for F and P × K for H

where K is the truncation level, Q is the combination number for all source/receiver

pairs and P is the total number of the unknown parameters. Moreover, the matrices F

and H are both column orthogonal, i.e. FT F = HT H = I which is readily proved from

the orthonomalities of the associated basis functions.

Nelson and Kahana also demonstrated in [141] that there exists an orthogonal ma-

trix S such that

J = (FS )(S TΛS )(HS )T (7.14)
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where S TΛS is a non-negative-valued diagonal matrix. By letting

U = FS
Σ = S TΛS
V = HS

(7.15)

equation (7.14) becomes the SVD of the Jacobian matrix. From (7.15) we can see that

the left and right singular vectors are linear combinations of the basis functions in the

excitation space and parameter space, respectively.

From the above derivation, it is clear that determining the orthonormal bases of

the parameter and excitation spaces is essential for the decomposition of the Jacobian

matrix. Unfortunately, it is quite difficult to construct such basis functions for arbitrary

spatial domains. In the following section, we focus on a special 2D case: circular

parameter domain with an equispaced circular source/receiver array.

Figure 7.1: Circular parameter domain with equally spaced circular antenna array.
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7.3 Jacobian SVD over a circular parameter domain

The problem analyzed in this section is illustrated in Figure 7.1. The parameter domain

is a circular region with radius rp. Sources and receivers are equally distributed along

a concentric circle whose radius is rs ≥ rp. The orthonormal basis function for the

circular parameter domain is analytically known, called the Zernike polynomial [205,

17] and is defined by

Zn
m(ρ, θ) = Rn

m(ρ/rp) exp( jnθ) (7.16)

where the radial component Rn
m(ρ) is defined by

Rn
m(ρ) =

(m−n)/2
∑

l=0

(−1)l(m − l)!
l!((m + n)/2 − l)!((m − n)/2 − l)!ρ

m−2l (7.17)

Thus, H can be written as
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where βκ is defined by

βκ =
1√
|Zκ |

(7.19)

and |Zκ| =
√

∫

Z2
κ (~r)d~r is the l2-norm of the κ-th Zernike polynomial.

Given the orthogonal expansion expression (7.9), we have the following relation-

ship

λκ:nφκ:n(θν:s, θν:r) =
1
|Zκ:n|

∫

g(~r,~rν:s)g(~r,~rν:r)Zκ:n(~r)d~r (7.20)

If we denote ΛHT in (7.10) by W, then (7.20) represents the (ν, κ)-th element of matrix
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W. By considering HT H = I, the singular values λ can finally be computed by

λκ:n =
√

||wi||2 (7.21)

where wi is the i-th row of matrix W.

The Green’s function in the 2D homogeneous case is given by (2.6). By inserting it

into (7.20), the integration on the RHS contains the multiplication term of three special

functions

λκ:nφκ:n(θν:s, θν:r) =
−1

16|Zκ:n|

∫

H(1)
0 (kbk |~r − ~rν:s|)H(1)

0 (kbk |~r − ~rν:r|)Zκ:n(~r)d~r (7.22)

The possibility of analytically evaluating this integral is still under investigation.

However, for the remainder of this section, numerical solution of the Jacobian matrix

will be computed for this domain configuration to verify our analysis.

Figure 7.2: Circular parameter mesh.

In the previous derivation, we assumed that the mesh has uniform density within the

parameter domain. A suitable mesh for this problem is shown in Figure 7.2. The mesh

has a radius of 6 cm and is surrounded by a 7.6 cm radius antenna array consisting of 32

equally spaced monopole antennas. Each antenna transmits a signal at 900 MHz while
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the remaining 31 antennas act as receivers. The Jacobian matrix under this scheme is

computed using our nodal adjoint formula (5.8) and its SVD is numerically computed.

Several right singular vectors were selected as examples whose values are plotted as

distributions over the parameter mesh (Figure 7.3). From these plots, the Zernike poly-

nomial Z4
4 , Z−4

4 , Z0
4 , Z1

3 , Z−3
5 , Z3

5 , Z0
6 , Z2

6 and Z4
6 can be identified as the major component

of each pattern.
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Figure 7.3: Right singular vector patterns: (a) |v8|, (b) |v9|, (c) |v28|, (d) |v29|, (e) |v35|, (f)
|v36|, (g) |v46|, (h) |v54|, (i) |v65|.
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7.4 Numerical SVD and the degree of ill-posedness

Analytical decomposition of the Jacobian matrix is only available for a few special

cases and evaluation of the integration in (7.20) is quite difficult in most cases. Alter-

natively, the numerical evaluation of the Jacobian matrix for the homogeneous back-

ground medium (i.e. using the Born approximation) can be easily computed even for

irregular-shaped parameter domains and source distributions given the nodal adjoint

representation. In this section, we study the impact of various imaging parameters,

including operating frequency, source/receiver number, background properties and pa-

rameter mesh density, on the singular spectrum of the Jacobian matrix, and, conse-

quently, the potential quality of the reconstructed image.

The problem configuration used in this section is identical to that of the previous

section except where otherwise noted. The numerical singular spectrum of the Ja-

cobian matrices were computed using different system parameters. In order to make

comparisons between the different spectrum’s, we modified the concept of the “degree

of ill-posedness” discussed in [77] using the following definition

Definition 7.4.1 (The degree of ill-posedness). if there exists a positive real number

α, for a singular spectrum {σi}Ni , and if σi
σ1
= O(exp(−αi)), then, α is called the degree

of ill-posedness of the spectrum.

A linear regression process was performed on the series {log(σi) − log(σ1)}i for esti-

mating α.

We first computed the Jacobian singular spectra at various frequencies within the

working frequency range of our system, i.e. 100 MHz to 3000 MHz in 100 MHz

increments. The plot of these spectrum curves is shown in Figure 7.4 (a). Notice that

portion of the curves underneath roughly −14 (log scale) are essentially zeros with
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respect to the computer resolution and are neglected. From the curve in Figure 7.4

(b), we can see that the degree-of-illposedness at 3000 MHz is roughly 1/3 of that

in the 100 MHz case indicating that utilizing higher frequencies is advantageous in

providing less redundant information about the target. However, one should recognize

that with the increase in frequency, the nonlinearity between the measurement data and

dielectric properties becomes more severe requiring more accurate initial estimate. In

cases where no a priori information is provided, the higher frequency measurement data

might lead to solutions trapped at local minima. Alternatively, image reconstructions at

lower-frequencies may require additional regularization which essentially smooths the

image. This may partially explain the distinct behaviors of the low frequency and high

frequency measurements described in Chapter 6.
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Figure 7.4: (a) Singular spectra and (b) degree-of-illposedness for a range of frequen-
cies.

In a second experiment, we varied the number of sources/receivers surrounding

the parameter domain. The antennas were evenly distributed along the array with one

transmitting and the remaining antennas acting as receivers. At 1100 MHz, their spectra

are plotted in Figure 7.5 (a). The corresponding degree-of-illposedness plot is shown



7.4. Numerical SVD and the degree of ill-posedness 255

in Figure 7.5 (b). These plots confirm our experience that more sources can provide

improved imaging performance. The degree-of-illposedness is significantly reduced

for increased number of antennas. At this frequency, above an array antenna count of

35, the rate of reduction in ill-posedness slows considerably.
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Figure 7.5: (a) Singular spectra and (b) degree-of-illposedness for various
source/receiver numbers.

The third experiment focused on the effects of the background medium proper-

ties. Utilizing 32 antennas operating at 1100 MHz, we varied the background dielectric

properties linearly from air to 0.9% saline (εr = 77, σ = 1.7 S/m). The singular spec-

trum curves are plotted in Figure 7.6 (a) while the corresponding degree-of-illposedness

curve is shown in Figure 7.6 (b). These plots demonstrate that the more lossy the back-

ground medium (in most coupling media we used in our system, the lossier medium of-

ten has higher permittivity as well) produces a lower degree-of-illposedness. However,

for very lossy media, the SNR of the measurement drops significantly which has a neg-

ative effect on the reconstruction. Therefore, when choosing the background medium,

both factors should be considered.

The fourth experiment considered the density of the reconstruction mesh, or number
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Figure 7.6: (a) Singular spectra and (b) degree-of-illposedness for various background
media.

of unknowns. Here, we varied the cell sizes of the reconstruction mesh and computed

the corresponding Jacobian singular spectrum. The corresponding singular spectrum

and degree-of-illposedness are shown in Figures 7.7 (a) and (b), respectively. From

these curves, we can make three basic observations: 1) if the number of unknowns

is smaller than the amount of independent measurement data (equal to the number

of sources multiplied by the number of receivers per source and divided by two due

to reciprocity), the singular spectrum drops precipitously at the number of parameter

nodes; 2) when the number of the unknowns is greater than the number of independent

measurements (i.e. underdetermined cases), the point where the spectrum drops is

determined by the amount of measurement data; and 3) increasing the reconstruction

mesh density is helpful in reducing the degree-of-illposedness of the problem; however,

the significance of this reduction is diminished when the number of unknowns is greater

than roughly twice that of the amount of independent measurement data (in this case,

the amount of independent measurement data is 32×31
2 = 496).

In the fifth experiment, we investigated the impact of using multi-frequency data in
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Figure 7.7: (a) Singular spectra and (b) degree-of-illposedness for various parameter
densities.

the reconstruction. To accomplish this, we repeated the second experiment while in-

corporating two (700/1100 MHz) and three (300/700/1100 MHz) frequency data sets.

The degree-of-illposedness curves were plotted in comparison with that of the single

frequency case (1100 MHz) (Figure 7.8). From the plot, the reduction in α for low

numbers of antennas is quite significant. This indicates that the amount of independent

measurement increases when incorporating multi-frequency data into the reconstruc-

tion. However, the curve for triple-frequency case only drops slightly from the curve

of the dual-frequency case indicating diminished improvement when adding data from

more frequencies. It is also interesting to note that as the number of antennas increases,

the differences between single and multiple frequencies is negligible.

One final experiment compared the log-magnitude phase form (LMPF) and tra-

ditional complex code reconstructions. As demonstrated in [151], the LMPF uses a

real-valued Jacobian matrix computed from the real form Jacobian matrix. The latter is

equivalent to the complex form Jacobian except that the unknowns are real variables.

Thus, we compared the degree-of-illposednesses of the LMPF Jacobian and the real
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Figure 7.8: Degree-of-illposedness for source/receiver numbers computed at different
frequency combinations.

form Jacobian at different source/receiver numbers. Interestingly, it turns out that the

singular spectra of these two Jacobians are exactly the same. This demonstrates that

the log-magnitude/unwrapped phase transform does not alter the singular spectrum of

the Jacobian matrix.

Notice that the previous discussion does not take into account measurement noise

which is a non-negligible factor for real applications. The presence of measurement

noise essentially sets a truncation level above the matrix numerical rank in the singu-

lar spectrum and the maximum extent of the effective spectrum is consequently con-

strained by this noise level. In Hansen’s work [77], a metric called the “effective reso-

lution limit” is devised to denote the turning point along the singular spectrum where

the measurement noise starts to dominate the solution. From our analysis above, the

maximum extent of the effective spectrum is directly related to the image resolution of

the final image and is evident from the orthogonal decomposition expression (7.8). The

more singular spectrum values that are included in the reconstruction, the more Zernike

polynomials will be used to construct the solution with correspondingly improved im-

age resolution. This conclusion holds not only for a Jacobian matrix utilizing the Born

approximation (single iteration cases), but also for iterative reconstructions. Assuming
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smooth convergence in an iterative reconstruction, the final image resolution is related

to the maximum angular and radial modes of the Zernike polynomials that correspond

to the full effective spectrum for all iterations and these high order angular and radial

modes are directly constrained by the noise level in the measurements.

7.5 Discussions and conclusions

We analyzed the singular value decomposition of the Jacobian matrix from the start-

ing point of the nodal adjoint expression derived in Chapter 5. This analysis provides

increased insight into the structure of the Jacobian matrix and the significance of its

components in the process of image reconstruction. We focused on 2D cases with a ho-

mogeneous background implying the assumption of the Born approximation. However,

it can be easily extended to 3D space and other simple parameter domain geometries.

For iterative reconstruction schemes, we indicated that the measurement noise level

plays an important role in determining the overall image quality. The concepts from

the research field of ill-posed problems, such as the degree-of-illposedness and the ef-

fective resolution limit, were introduced into our application to assess the effects of

various system parameters.

Among the efforts of further understanding the Jacobian matrix and its impact to

the reconstruction, investigations to the analytical derivation of the integration in (7.20)

for simple geometries is needed as well as characterizing the measurement noise level

for our the current system in order to apply our analysis to optimizing the system per-

formance.





Part III

Phase unwrapping and phase

singularities
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Chapter 8

A mathematical framework of phase

unwrapping

Spatial unwrapping of the phase component of time varying electromagnetic fields has

important implications in a range of disciplines including MRI, optical confocal mi-

croscopy and microwave tomography. This chapter presents a fundamental framework

based on the phase unwrapping integral, especially in the complex case where phase

singularities are enclosed within the closed path integral. With respect to the phase

unwrapping required when utilized in Gauss-Newton iterative microwave image recon-

struction, the concept of dynamic phase unwrapping is introduced where the singularity

location varies as a function of the iteratively modified property distributions. Strate-

gies for dynamic phase unwrapping in the microwave problem were developed and

successfully tested in simulations and phantom experiments utilizing large, high con-

trast targets to validate the approach which can be found in the following chapters.

263
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8.1 Introduction

The complex (or real and imaginary) representation is used in many physical problems

to simplify the associated mathematical derivations into succinct and meaningful ex-

pressions, especially when analyzing wave phenomenon in the frequency domain. In

such problems, it is quite natural to transform the complex forms of such equations

into their magnitude and phase representations. These representations are also con-

venient since the magnitude and phase features of many physical quantities can be

measured and processed directly and serve as quantitative descriptions of the associ-

ated phenomenon. Consequently, understanding the magnitude and phase in both the

mathematical and physical context is important. In this paper we focus primarily on the

phase which is often the more difficult quantity to process.

In many applications, the phase encodes rich temporal and spatial information [147].

Decoding it is an important aspect of signal processing especially in image processing.

However, an important and often difficult aspect of the phase signal is the wrapping due

to its periodical nature. The result of wrapping introduces mathematical discontinuities

in the phase signal which often cause major challenges in various applications. Phase

unwrapping techniques have been developed to restore the “continuous” phase from the

wrapped version and has been widely studied in interferometric synthetic aperture radar

(InSAR) [204, 63] and MRI image processing [38] along with other implementations.

In InSAR phase data processing, investigations into the phase unwrapping imposed

by the presence of phase singularities has received considerable attention over the last

decade. Robust phase unwrapping strategies were developed to account for the effect

of these phase singularities in static 2-D phase maps [65, 158].

Another area of investigation involving phase unwrapping and phase singulari-

ties stems from the study of nulls in wave scattering problems. Scattering nulls re-
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fer to the spatial locations where the amplitudes of the field goes to zero, rendering

the associated phase unspecified. Nye and Berry [146] performed the first system-

atic study of this phenomenon in optical scattering problems. It has also been dis-

cussed under different labels such as wave dislocations [146], phase singularities [172]

and optical vortices [118, 99, 143] among various publications where its curious na-

ture related to phase unwrapping has received the majority of attention. The equiv-

alence of a discrete scattering null and phase singularity was demonstrated by Fried

and Vaughn [58] while the evolution and structure of these nulls were investigated by

several researchers [172, 42, 145].

Our work on phase unwrapping and scattering nulls is motivated by the utilization

of the unwrapped phase in our iterative reconstruction algorithm for microwave med-

ical imaging. A log-magnitude phase form (LMPF) image reconstruction algorithm

was proposed by Meaney et al. [151] and demonstrated improved performance in both

convergence and resulting image qualities over the more traditional complex form algo-

rithm (Section 3.2.3). However, as we applied this algorithm in various clinical cases,

we observed that LMPF algorithm failed under certain circumstances and produce noisy

or diverged results. We later observed that the failure of the LMPF algorithm in these

situations was related to the presence of scattering nulls within the imaging domain. In

some cases, the nulls were only present at intermediate solutions of the Gauss-Newton

iterative reconstruction process. To be able to explore the advantages of the LMPF

reconstruction in these situations, robust phase unwrapping strategies are required to

correctly process the scattering nulls in the iterative image reconstruction scenario.

This part of the thesis is comprised of three closely related topics. First, we will

develop a mathematical framework for the phase unwrapping analysis. Conclusions

from both complex analysis and the field of topology are utilized to formalize the phase
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unwrapping properties in mathematical terms. The concept of static and dynamic phase

unwrapping problems are introduced to facilitate the application of the phase analysis

theory. In contrast to the first topic, we investigated the phenomenon of scattering nulls

in the microwave scattering problem from a physical perspective as a natural extension

of its optical counterpart in Chapter 9. The relationship of these phase unwrapping

problems in 2-D and 3-D spaces are also briefly discussed. The last topic (Chapter

10) focuses on the application of the two preceding analyses to microwave image re-

construction utilizing the LMPF algorithm. Simple and robust unwrapping strategies

are proposed to solve the challenges associated with the current algorithm. Image re-

constructions utilizing simulated and clinical measured data are performed to test the

validity and efficiency of these analyses and strategies.

8.2 A mathematical framework of phase unwrapping

8.2.1 Phase function and the single-valued interval

In these derivations, functions with domain X and range in Y are denoted by W : X →

Y . More specifically, if W is a complex-valued function in an n-dimensional Euclidean

space, where X = Rn and Y = C, one can write W in the form of W(r) = u(r) +

jv(r) = (u(r), v(r)) where r ∈ Rn. If real functions u(r) and v(r) are both continuously

differentiable functions in Rn, W is said to be continuously real-differentiable [168],

and consequently continuous.

Applying Euler’s formula, W can also be written in exponential form:

W(r) = ρ(W(r)) exp( jΦ(W(r))) (8.1)
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where ρ : C→ R+ ∪ {0} is the amplitude function and Φ : C→ R is the phase function.

Particularly, for a complex number w = (u, v) ∈ C, phase function Φ(w) can be written

as

Φ(w) = atan2(v, u) + 2nπ (8.2)

where n ∈ Z is an arbitrary integer due to the periodic nature of the complex exponential

function. Function atan2 is defined as an extension of arctan function as:

atan2(v, u) =







































arctan(v/u) u > 0
π × sign(v) + arctan(v/u) u < 0
π/2 × sign(v) u = 0, v , 0
arbitrary u = 0, v = 0

(8.3)

where sign(v) is the sign of v, defined as sign(v) = 1 if v > 0, -1 if v ≤ 0.

From (8.2) we see that Φ(W(r)) is a multi-valued real function. To simplify the

analysis, we define the single-valued interval S for any given real number ϕ0 ∈ R as

S = [ϕ0, ϕ0 + 2π). For any r ∈ Rn if (u(r), v(r)) ∈ C\{0} (C\{0} is also denoted as C×),

there exists one and only one integer nS ∈ Z that satisfies (as a direct consequence of

the Pigeonhole principle [28])

atan2(v(r), u(r)) + 2nSπ ∈ S

As a result, we define a single-valued function

φS (W(r)) = atan2(v(r), u(r)) + 2nSπ ∈ S (8.4)

where φS (W(r)) is called a single-valued branch of Φ(W(r)) over interval S . For con-

venience, we denote interval [−π, π) as S ∗. For any W(r) ∈ C×, the output of function
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atan2(v, u) always resides within S ∗; therefore, (8.4) can be written as

φS (W(r)) = φS ∗(W(r)) + 2nSπ ∈ S (8.5)

8.2.2 Path and Phase unwrapping integral

Before defining the phase unwrapping integral, we must examine another important

concept: the path. In complex analysis, a path is defined as a continuous map between

the real interval I = [0, 1] to a metric space Y [168]. For example, a curve in C is

denoted as γ : I → C. γ(0) and γ(1) designate the initial point and the terminal point

of curve γ. If γ(0) = γ(1), we say γ is a closed path. Paths are sometimes called

curves. A path-sum is defined as γ = ∑N
i=1 γi with overlapped initial points and terminal

points among the γi, i = 1, 2, · · · ,N. A path γ is said to be piecewise continuously

differentiable if it can be written as a finite path-sum of continuously differentiable

paths [168](p.172). Let Γ be a piecewise continuously differentiable path, W : Rn → C

be a real-differentiable function, for any r ∈ Γ, if W(r) , 0, we call Γ a piecewise

unwrappable path. Since the definition of the phase unwrapping integral will involve

the gradient of the phase function, we will only consider piecewise unwrappable paths

unless otherwise noted.

Given a single-valued interval S = [ϕ0, ϕ0 + 2π) and a real-differentiable function

W : Rn → C, we call path Γ : I → Rn an unwrappable path of S under W if for all r ∈ Γ

φS (W(r)) ∈ S \{φ0} (8.6)

We denote Γ ∈ P(S ,W), where P(S ,W) is the set of all unwrappable paths of complex

function W over the single-valued interval S . φS (W(r)) is a composite map such that
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φS ◦W ◦ Γ : I → R which is readily shown to be piecewise continuously differentiable

over I if Γ ∈ P(S ,W). For the identity map Id : C → C, any path in the C plane

that does not cross phase branch cut φS (z) = φ0 and the origin is an unwrappable path.

The previous explanation of the basic concepts sets the stage for us to define the phase

unwrapping integral as:

Definition 8.2.1 (Phase Unwrapping Integral). Let W : Rn → C be a continuously

real-differentiable function, and Γ : I → dom(W) be a path in the domain of W. The

phase unwrapping integral of W over path Γ is then defined as

∫

Γ

∇φ(W(r)) · dl =
N

∑

i=1

∫

Γi

∇φS i(W(r)) · dl (8.7)

where r ∈ Rn, Γ = ∑N
i=1 Γi and Γi ∈ P(S i,W). ∇φS i(W(r)) is the gradient of the single-

valued phase function with single-valued interval S i.

Γi is called a segment of Γ, and set {Γi}Ni=1 is a segmentation of path Γ. All (Γi, S i)

pairs comprise a set of {(Γi, S i)}Ni=1 referred to as a partition of Γ. We use Q(Γ) to

designate the set of all partitions of Γ. The left-hand-side of (8.7) can be reduced as

U(W(r), Γ) orU(W(r), {Γi, S i}).

Here we provide a constructive proof on the existence of a partition for any piece-

wise unwrappable path Γ : I → R
n. Interval I is a topology space, for ∀t ∈ I,

we construct the quotient space I/ ∼ based on an equivalence map [107](p.54) with

∼= {t|t ∈ I and φS ∗(W(Γ(t))) ∈ [−π, 0]}. Since Γ and W are continuous maps, the sub-

spaces of quotient space Γ/ ∼ are continuous subintervals of I. The subintervals sat-

isfying map ∼ are closed intervals whose images under Γ are unwrappable paths with

S = [−π/2, 3π/2). The remainder are open subintervals where φS ∗(W(Γ(t))) ∈ (0, π).

One can add boundary points to transform them into closed intervals whose images
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under Γ are the unwrappable paths of S = [π/2, 5π/2).

8.2.3 Properties of the phase unwrapping integral

Definition 8.2.1 illustrates the phase unwrapping integral for any valid partition of a

unwrappable path. However, for a given path, the number of possible valid partitions is

infinite. In this subsection, we shall first demonstrate the independence of the integral

with respect to partitions of the path, followed by a illustration of the properties of the

closed-path phase unwrapping integral.

Lemma 8.2.2. Let W : Rn → C be a continuously real-differentiable function, and S

be a single-valued interval. For any unwrappable path Γ : I → dom(W) of S with

Γ(0) and Γ(1) being the initial and terminal points, respectively, U(W(r), Γ) can be

expressed as

U(W(r), Γ) =
∫

Γ

∇φS (W(r)) · dl = φS (W(Γ(1))) − φS (W(Γ(0))) (8.8)

Lemma 8.2.2 can be easily verified by using the fundamental theorem of a line inte-

gral [45](p.976) given the piecewise continuous differentiability of φS over I.

Lemma 8.2.3. Let W : Rn → C be a continuously real-differentiable function, S 1 and

S 2 be two single-valued intervals, and Γ : I → dom(W) be a path. If Γ ∈ P(S 1,W) and

Γ ∈ P(S 2,W), then

∫

Γ

∇φS 1(W(r)) · dl =
∫

Γ

∇φS 2(W(r)) · dl (8.9)
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Proof. From lemma 8.2.2, equation (8.9) can be re-written as

∫

Γ
∇φS 1(W(r)) · dl = φS 1(W(Γ(1))) − φS 1(W(Γ(0)))

∫

Γ
∇φS 2(W(r)) · dl = φS 2(W(Γ(1))) − φS 2(W(Γ(0)))

(8.10)

Since path Γ lies in a single-valued branch of the phase function, the change of the

single-valued interval will result in simultaneous addition or subtraction of 2nπ for all

points in Γ. Therefore, the phase differences between W(Γ(0)) and W(Γ(1)) remain

constant, and from (8.10), lemma 8.2.3 is proven. �

Lemma 8.2.4. Let W : Rn → C be a continuously real-differentiable function. For any

path Γ : I → dom(W), if {(Γi, S i)}Ni=1 ∈ Q(Γ), then we have

U(W(r), Γ) =
N

∑

i=1

(

φS i(W(Γi(1))) − φS i(W(Γi(0)))
)

(8.11)

This is obvious from definition 8.2.1 and Lemma 8.2.2.

Lemma 8.2.5. Let W : Rn → C be a continuously real-differentiable function, Γ : I →

dom(W) be a path, and {(Γi, S i)}Ni=1 ∈ Q(Γ) be a partition of Γ. If Γi =
∑Ni

j=1 Γi, j, then
⋃

i, j
{(Γi, j, S i)} ∈ Q(Γ) and

U (W(r), {(Γi, S i)}) = U
















W(r),
⋃

i, j
{(Γi, j, S i)}

















(8.12)

Proof. If Γi ∈ P(S i,W), the continuous subspaces Γi, j are also unwrappable paths of

S i, i.e. Γi, j ∈ P(S i,W) for all j. Therefore,
⋃

i, j
{(Γi, j, S i)} is a valid partition of path Γ,

referred to as a refinement of partition {(Γi, S i)}. From Lemma 8.2.4,

U(W(r), Γi) =
Ni
∑

j=1

(

φS i(W(Γi, j(1))) − φS i(W(Γi, j(0)))
)

(8.13)

From the path-sum definition, segments Γi, j overlap at initial and terminal points. There-
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fore, the phases at intermediate points cancel and the summation in (8.13) leaves only

the phase difference between the initial and terminal points of Γi. �

Theorem 8.2.6. Let W : Rn → C be a continuously real-differentiable function, Γ :

I → dom(W) be a path, and {(Γa
i , S a

i )}Na
i=1 and {(Γb

i , S b
i )}Nb

i=1 be two partitions of Γ. Then

U(W(r), {(Γa
i , S a

i )}) = U(W(r), {(Γb
i , S b

i )}) (8.14)

Proof. Construct a refinement {(Γc
i , S c

i )}
Nc
i=1 of {(Γa

i , S a
i )}Na

i=1, which satisfies: for ∀Γc
i ,

there exist two positive integers M,N ∈ N with Γc
i ⊂

(

Γa
M ∩ Γb

N

)

. Letting S c
i = S a

M,

from Lemma 8.2.5, we can write

U(W(r), {(Γc
i , S c

i )}) = U(W(r), {(Γa
i , S a

i )}) (8.15)

Furthermore, letting let S c
i = S b

N = S̃ c
i produces

U(W(r), {(Γc
i , S̃ c

i )}) = U(W(r), {(Γb
i , S b

i )}) (8.16)

From Lemma 8.2.3 , the left-hand-sides of (8.15) and (8.16) are equal. Therefore, the

associated right-hand-sides are also equivalent. �

Since the complex function W is a continuous map, the image of a piecewise un-

wrappable path in the range of W is also a piecewise unwrappable path. As a result, we

can transform the integral variable to the C plane:

Lemma 8.2.7. Let W : Rn → C be a continuously real-differentiable function, and

Γ : I → dom(W) be a path. Let Id : C → C be an identity map over C, and Γ′ be the
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image of the Γ under map W, i.e. W : Γ→ Γ′. Then

U(W(r), Γ) = U(Id(z), Γ′) (8.17)

Proof. Utilizing a partition of Γ, {(Γi, S i)}, from Lemma 8.2.4 , we can write

U(W(r), {(Γi, S i)}) =
∑

i

(

φS i(W(Γi(1))) − φS i(W(Γi(0)))) (8.18)

For any segment Γi, the image in C under W is Γ′i and Γ′ =
∑

i Γ
′
i . Since Γ ∈ P(S i,W),

Γ′i ∈ P(S i, Id). Consequently, {(Γ′i , S i)} is a partition of path Γ′. From Lemma 8.2.4

U(Id(r), {(Γ′i , S i)}) =
∑

i

(

φS i(Id(Γ′i (1))) − φS i(Id(Γ′i (0)))
)

(8.19)

Considering Γ′i (0) = W(Γi(0)), Γ′i(1) = W(Γi(1)) and Id(z) = z, Lemma 8.2.7 is proven.

�

The phase unwrapping integral over a closed path possesses similarities to that of

the complex integral. The following two theorems are quite useful in real applications.

Theorem 8.2.8. Let W : Rn → C be a continuously real-differentiable function, Γ :

I → dom(W) be a closed path, and Γ′ ⊂ C be the image of Γ. If Γ′ does not enclose

z = 0 in the C space, we can write

U(W(r), Γ) = 0 (8.20)

Proof. From Lemma 8.2.7, we can produce U(W(r), Γ) = U(Id(r), Γ′). The closed

path integralU(Id(r), Γ′) in C space is subsequently discussed in two cases:

1. If there exists a real number ϕ0 making Γ′ ∈ P(S , Id), where S = [ϕ0, ϕ0 + 2π),

and since phase map φS is a continuous function over Γ′, from the extreme value theo-
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rem [107](p.76), there must exist two points zA, zB ∈ Γ′, where φ(zA) = sup(φS (Γ′)) =

φH and φ(zB) = inf(φS (Γ′)) = φL as shown in Figure 8.1 (a). zA and zB divide Γ′ into

two segments Γ′AB and Γ′BA both of which are unwrappable paths of S . From Lemma

8.2.2, the summation of the phase unwrapping integral over the two paths is zero.

2. if such ϕ0 does not exist (Figure 8.1(b) for example), we add pairs of paths

along the u and v axes between the intersections of Γ′ with the axes. This results in a

collection of closed curves, each covering a single quadrant. Therefore, we can apply

the conclusion from case 1 and produce zeros for all of these paths.

C

u

v

φ
H

φ
L

φ
0

Γ'

A

B
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v

Γ'
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Figure 8.1: Proof of Theorem 8.2.8

�

Theorem 8.2.8 can be extended to a more general case if we incorporate the winding

number concept [168, 144, 83] from topology to get:

Theorem 8.2.9. Let W : Rn → C be a continuously real-differentiable function, Γ :

I → dom(W) be a closed path, Γ′ be the image of Γ in C, and IndΓ′(0) be the winding
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number (or index) of close path Γ′ with respect to the origin in C. Then

U(W(r), Γ) = 2π · IndΓ′(0) = 1
j

∮

Γ′

dz
z (8.21)

Proof. 1. if IndΓ′(0) = 0 (i.e. closed path Γ′ does not enclose the origin in C), theorem

8.2.9 is proven by theorem 8.2.8.

2. if IndΓ′(0) = 1, we create a rectangular mesh within Γ′ as shown in Figure

8.2. The integral over Γ′ is converted into a summation of closed path integrals along

the boundary of each subdivided zone. Because the directions of integration along

any one line segment are opposite each other for adjacent subzones sharing that line

segment, all internal line integrations within Γ′ cancel. Only one rectangle Γ′R that

encloses the origin while the rest of them yield zeros from theorem 8.2.8. Denoting

the two intersections of Γ′R with u-axis by A and B, path Γ′R is broken into Γ′AB and

Γ′BA. Choosing S 1 = [−π/2, 3π/2) and S 2 = [π/2, 5π/2) where Γ′AB ∈ P(S 1, Id) and

Γ′BA ∈ P(S 2, Id) produces

U(Id(z), Γ′R) = U(Id(z), Γ′AB) +U(Id(z), Γ′BA)
= (π − 0) + (2π − π) = 2π

(8.22)

For paths with IndΓ′(0) = −1, the analysis is similar.

3. if |IndΓ′(0)| is larger than 1, such as in Figure 8.3, we can always add pairs of

paths along u-axis between its intersections with path Γ′, resulting in a collection of

enclosed paths Γ′i with IndΓ′i (0) = ±1. From the discussion above and the addition

property of winding number [168](p.288), theorem 8.2.9 is readily proven.

�
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Figure 8.2: Closed path integral over Γ′ with IndΓ′(0) = 1.
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Figure 8.3: Decomposition of a multi-wound closed path into simple closed paths
(IndΓ′1(0) = IndΓ′2(0) = ±1)



8.2. A mathematical framework of phase unwrapping 277

8.2.4 Closed path phase unwrapping integral in Rn space

The conclusions in previous section are general for any continuously real-differentiable

complex function over Rn. Notice that theorems 8.2.8 and 8.2.9 specifically involve the

image of the unwrapping path in C space, while, in many applications, the unwrapping

paths are chosen directly in Rn space (more specifically, in R2 or R3). An extension of

theorem 8.2.9 from C to Rn space would prove useful.

In Rn space, the complete inverse image of z = 0 ∈ C is defined as the point set

{r|r ∈ Rn,W(r) = 0}, denoted by W−1(0). Equivalently, W−1(0) can be defined as the

solution of














u(r) = 0
v(r) = 0

r ∈ Rn (8.23)

where u(r) and v(r) are the real and imaginary part of W, respectively.

Assuming map W : Rn → C has full rank over every point in W−1(0), from The-

orem 5.8 and Corollary 5.9 of [16], we can be assured that W−1(0) is a closed regular

submanifold with dimension n − 2. With this assumption, instead of looking for the

topological relation between Γ′ and z =0 in C as we did in Theorem 8.2.9, we can in-

vestigate the reciprocal graph pair, i.e. Γ and W−1(r), in Rn space since both are closed

regular manifolds. In higher dimension space, the corresponding concept to the wind-

ing number is the linking number [97, 144](p.8). In such cases, it is not difficult to

prove from the definition that the following is true

IndΓ′(0) = Lk(Γ,W−1(0)) (8.24)

where Lk(Γ,W−1(0)) is the linking number between the unwrapping path Γ and the

complete inverse image of z = 0.

Consequently, we have the following conclusion:
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Theorem 8.2.10. Let W : Rn → C be a continuously real-differentiable function with

n ≥ 2, and Γ : I → dom(W) be a closed paths. If W has full rank at every point in

W−1(0) = {r|r ∈ Rn,W(r) = 0}, then

U(W(r), Γ) = 2π · Lk(Γ,W−1(0)) (8.25)

Theorem 8.2.10 reveals more realistic pictures about phase unwrapping over closed

path, which turns out to be 2πmultiplies of the linking number between the chosen path

and W−1(0), which is sometimes referred as a phase singularity. In two dimensional

space, W−1(0) is a set of oriented point pairs, such as shown in Figure 8.4 (a) where

we used crosses and circles to denote the orientation of the points (note that the crosses

and circles are always in pairs since W−1(0) is a closed manifold); whereas in R3, it

manifests itself as an oriented closed curve or curves, as in Figure 8.4 (b), or even more

complicated geometries [11].

8.2.5 Static and dynamic phase unwrapping problems

In general, there are two types of applications of the phase unwrapping integral. The

first type typically involves only one static distribution of the complex field (in 2-D or

3-D) requiring the evaluation of the phase unwrapping integral at given field points with

respect to specified reference points. We refer to this as the static phase unwrapping

problem. From Theorem 8.2.6 the phase unwrapping integral is unambiguously defined

for any valid unwrapping path. Consequently, the static phase unwrapping problem can

be simplified to:

Definition 8.2.11 (Static Phase Unwrapping). Let W(r) = u(r)+ jv(r), and r ∈ D ⊂ Rn

be a complex field distribution over domain D. The observation set consists of a finite
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Figure 8.4: Mapping relationships between Rn and C. The cross and circle in R2 and
bold line in R3 are the pre-images of the origin in C.
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number of field points {ri ∈ D}Ni=1. For each observation point ri, a reference field

point r0
i ∈ D and a piecewise smooth path Γi : I → D from r0

i to ri are selected.

The phase unwrapping integral for each path yields the associated unwrapped phases

{U(W(r), Γi)}Ni=1.

Quite often, a single reference field point r0 ∈ D is used for all observation points.

In that case, all unwrapping paths Γi share a common initial point r0. From Theorem

8.2.6 and 8.2.9, if there is no phase singularity in the complex field distribution W(r)

over domain D, the results of the phase unwrapping integrals are independent of the un-

wrapping paths and unique solutions are produced for all observation points in domain

D. However, when phase singularities appear in domain D, we can no longer recover

unique unwrapped phases at observation points. In order to generate meaningful phase

information, unwrapping path selection criteria must be imposed.

The second type of phase unwrapping problems involves a sequence of complex

field distributions governed by a set of parameters p, denoted by {W(r, p(t))|r ∈ D}Nt
t=1,

where parameter p is either a single or vector valued function of time, t. In such cases, it

is often essential to unwrap the phases at observation points for the complete sequence

of the complex fields with additional constrains such as continuity requirements. This

is called dynamic phase unwrapping and is defined below:

Definition 8.2.12 (Dynamic Phase Unwrapping). Let W : Rn × T → C be a dif-

ferentiable function over Rn and parameter space T , and {W(r, p(t)) = u(r, p(t)) +

jv(r, p(t))}Nt
t=1 be a sequence of complex field distributions over D ⊂ Rn with respect to

a finite parameter sequence p : {1, 2, ...,Nt} → T [107]. For each complex field distri-

bution (subsequently defined as a frame) in the sequence, static phase unwrapping is

performed. The reference point is generally pre-determined and the unwrapping paths
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are constrained by the continuity condition of the sequence usually in the form of

lim
p(t)→p(t−1)

|U(W(r, p(t)), Γi) − U(W(r, p(t − 1)), Γi)| = 0 (8.26)

which results in a sequence of unwrapped phases {U(W(r, p(t)), Γi)}N,Nt
i=1,t=1 at the obser-

vation points.

Similar to static phase unwrapping, in the case where none of the frames contain

phase singularities, for a given set of reference points, the unwrapped phases of each

frame of the sequence are uniquely determined. The continuity condition is automati-

cally satisfied since W is a continuous function of parameter p.

In the case where phase singularities do exist in some frames of the sequence, con-

dition (8.26) will play an important role in determining the unwrapped phases in those

field distributions. Since W(r, p) is a continuous function of both location r and param-

eter p, the location of a single phase singularity in Rn space will continuously depend

on parameter p. For R2 space, we expect the singularities to follow a continuous curve

Λ : T → D connecting the locations of each phase singularity from one frame to the

next if present. We call these curves the phase singularity trajectories and define the

trajectory set {Λi}Ns
i=1 as the collection of all the trajectories within the sequence, with

Ns denoting the total number of the trajectories. Analogously, in R3 space, the trajec-

tories of the phase singularities are surfaces. Note that, the trajectory Λ is not simply

a linear connection of the phase singularity locations in discrete successive frames, but

rather a continuous map from parameter space T to Rn space. Once the trajectory set

of a complex field distribution sequence is identified, the evaluation of dynamic phase

unwrapping problem satisfying condition (8.26) is more obvious. Assuming that iden-

tical reference points are used for all frames in the sequence, one useful criterion for
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selecting the unwrapping paths is:

The phase unwrapping path Γ for any observation point r and associated reference

for a given frame shall not cross the singularity trajectory set {Λi}Ns
i=1 for the complete

sequence of the frames.

The rationale for the above criterion is straightforward: given an observation point r

and its associated reference, the unwrapping paths at frames with p and p+∆p are both

within the complimentary space of trajectory set in domain D, i.e. within D\{Λi}. Since

neither of the paths intersect the phase singularity trajectories, the region enclosed by

the two paths will not contain any phase singularity. As ∆p → 0, the two paths will

yield the same unwrapped phases and equation (8.26) is satisfied. However, if one path

crosses the trajectory, there exists a frame at which the phase singularity falls inside the

region enclosed by the two paths. Then as ∆p → 0, the unwrapped phase difference

between the two paths will approach 2π and (8.26) is violated.

In Chapter 9, we will use the notion of dynamic phase unwrapping and the path

selection criteria to investigate the iterative image reconstruction process in microwave

imaging.



Chapter 9

Phase singularities in microwave

scattering problems

Scalar or vector Helmholtz equations with associated boundary conditions are the gov-

erning equations describing the scattering phenomenon of time-harmonic electromag-

netic waves [31]. The Helmholtz equation requires the existence of the second order

derivatives meaning that the electric and magnetic field components solved by the equa-

tion are all continuously real-differentiable complex functions up to the continuity at

internal boundaries.

Moreover, the scattering field may contain scattering nulls, where the amplitude in

the complex representation of the scattering field is zero. At these nulls, the Helmholtz

equation is reduced to the Laplace equation. There is a very small subset of solutions

which are rank-deficient maps and satisfy



























∂Ar/∂x = α∂Ai/∂x
∂Ar/∂y = α∂Ai/∂y
∂Ar/∂z = α∂Ai/∂z

(9.1)
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where Ar and Ai are the real and imaginary parts of the field components, respectively,

and α is a nonzero constant. Spatially linear-varying static fields are examples of these

rank-deficient cases. However, in most cases, the solutions of scattering problems are

full-ranked maps. As a result, the conclusions from Section 8.2.3 and 8.2.4 can be

applied here.

In this chapter, we will examine the phase of the scattering field of an infinitely

long, lossy cylinder with an incident TM cylindrical wave to demonstrate the scattering

null phenomenon and the related 2-D phase unwrapping problem. For the 3-D phase

unwrapping problem, we examine the scattering field of a lossy sphere illuminated by

a dipole antenna to illustrate differences in features of scattering nulls between 2-D and

3-D spaces.

9.1 Scattering nulls in 2-D problems

Consider an infinite lossy cylinder with radius ρa and its axis oriented along the z-axis

with a line source placed in parallel to the z-axis at polar location (ρs, φs) (φs is zero

in the configuration in Figure 9.1) with current density ~J = ẑ exp( jωt) (essentially a

2-D problem). The background medium has relative permittivity ε1 and conductivity

σ1 with those of the cylinder being ε2 and σ2, respectively. Assuming time dependence

exp( jωt), the complex wave number of the background and the cylinder can be writ-

ten in form of ki =
√

ω2µ0ε0εi − ωµ0σi, i = 1, 2 where ε0 and µ0 are the free space

permittivity and permeability, respectively. By separating variables and matching the

boundary conditions, the series solution of the Ez component can be obtained in the

similar way as in [80]. The incident or primary (p), scattered (s) and total (t) Ez field

distributions in region I can be written as
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Figure 9.1: Scattering of a cylindrical TM wave by an infinite cylinder

E I
p = E0

+∞
∑

n=−∞
H(2)

n (k1ρ>) · Jn(k1ρ<)e jn(φ−φs)

E I
s = E0

+∞
∑

n=−∞
cn · H(2)

n (k1ρ>)·H(2)
n (k1ρ<)e jn(φ−φs)

E I
t = E I

p + E I
s

(9.2)

while in region II, the total (t) Ez field distribution can be written as

E II
t = E0

+∞
∑

n=−∞
dn · H(2)

n (k1ρs) · Jn(k2ρ)e jn(φ−φs) (9.3)

where E0 is the amplitude, Jn stands for the n-th Bessel function of the first kind,

and H(2)
n for the n-th Hankel function of the second kind. ρ> = max(ρ, ρs) and ρ< =

min(ρ, ρs). In Figure 9.1, φs is simply 0. cn and dn are parameters defined by

cn = − k1 Jn(k2ρa)J′n(k2ρa)−k2 Jn(k1ρa)J′n(k2ρa)
k1 Jn(k2ρa)H

′(2)
n (k1ρa)−k2H(2)

n (k1ρa)J′n(k2ρa)

dn =
k1Jn(k2ρa)H

′(2)
n (k1ρa)−k1H(2)

n (k1ρa)J′n(k1ρa)
k1Jn(k2ρa)H′(2)

n (k1ρa)−k2H(2)
n (k1ρa)J′n(k2ρa)

When the permittivity and conductivity of the cylinder is much larger or lower than

that of the background medium (i.e. high-contrast), scattering nulls will emerge in the

total field. For example, in the case where the operating frequency f=800 MHz, ρa =

3 cm, ρs = 7.6 cm, where the 0.9% saline background medium has ε1 = 76 andσ1 = 1.7

S/m, and the scattering cylinder (breast fat tissue [156]) has ε2 = 5 and σ2 = 0.1 S/m,

the contour plot of the total field amplitude (in dB) in both regions I and II is shown in
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Figure 9.2: Amplitude(dB) and phase(radians) plot of the total field in regions I and II
at f =800 MHz.

Figure 9.2 (a), and that of the wrapped phase, φ(Et), is shown in Figure 9.2 (b). (The

dashed white circles indicate the location and size of the scattering cylinder.) From

Figure 9.2, two scattering nulls (or phase singularities) can be identified where either

the amplitude abruptly drops to zero and correspondingly where the phase changes

abruptly. Similarly, at a higher frequency, more nulls appear both inside and outside

the cylinder (Figure 9.3). In this case, the electrical properties of the background and

cylinder have been the previous case and the operating frequency is 2 GHz. In Figure

9.3, 12 phase singularities are visible.

From a wave perspective, scattering nulls can be explained as the destructive inter-
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Figure 9.3: Phase plot of the total field in regions I and II at f =2 GHz.
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Figure 9.4: Out-of-phase curves (dash lines) and equal-amplitude curves (thin solid
lines) at f =2 GHz. Their intersections illustrate the scattering null locations

ference points caused by the interaction of the incident and scattered waves. The nulls

appear where the incident and scattered waves have equal amplitudes but (2n + 1)π

phase differences. For the cylinder scattering problem shown in Figure 9.3, the equal

amplitude curves (Figure 9.4), where
∣

∣

∣Ep
∣

∣

∣ = |Es|, and the out-of-phase curves, where

φ(Ep) = φ(Es)+(2n+1)π, are drawn and their intersections clearly indicate the locations

of the nulls.

For this problem, it is quite difficult to derive a closed solution for the complex

null locations. For more complex scattering problems, numerical techniques must be

applied to determine the locations.
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9.2 Phase unwrapping in 2-D scattering fields

The static phase unwrapping problem in the previous example is relatively straight-

forward. Typically the source point is chosen as the zero-phase reference point. As

discussed earlier, if the scattered field is null free, for any given observation point, arbi-

trary unwrapping paths will lead to identical solutions. However, if there are scattering

nulls, the unwrapped phase will be path dependent. For example, in Figure 9.2 (b), path

Γ1 and path Γ2 yield different unwrapped phase values with a 2π phase difference.

If we take either the frequency, or the dielectric properties of either the background

or cylinder, ρs or ρa of the scattered field, we can form a group of dynamic phase

unwrapping problems with respect to the selected parameter. For example, if the fre-

quency is varied from 590 to 1000 MHz in 10 MHz increments in the above problem,

a sequence of electrical field distributions can be obtained. For each distribution, the

locations of the nulls vary. Given the continuous nature of the scattering field, a simple

linear connection between the positions of the nulls in the two successive field distri-

butions is a relatively good approximation to the continuous trajectory of the nulls for

this sequence with respect to frequency change. The approximate trajectory for the

frequency sequence discussed above is shown in Figure 9.5.

9.3 Phase unwrapping in 3-D scattering fields

In the 3-D scattering problem, the finite difference-time domain (FDTD) method was

used to compute the scattering field of a lossy sphere (εr = 10, σ = 0.4 S/m) for the

same saline background with a dipole source illumination. The sphere was centered at

the origin with radius ra = 3 cm and the z-oriented dipole antenna was positioned at

(rs, 0, φs) with rs = 7.6 cm and φs = π/2 in spherical coordinates. A ring-like scattering
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Figure 9.5: The trajectories of scattering nulls for the frequency varying from 590 to
900 MHz.
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Dipole Antenna

Figure 9.6: 3-D scattering null in the field scattered by a lossy sphere at f =900 MHz.
The ring-like null curve is on the opposite side of the sphere with respect to the short
dipole antenna location.

null is extracted from the 3-D amplitude plot of the total field at 900 MHz which is

shown in Figure 9.6 (contour plots of the field magnitudes are also shown in the figure

for two orthogonal planes).

For the dynamic phase unwrapping problem in 3-D, the phase singularity trajecto-

ries due to gradual changes in the selected parameter will form a surface, referred to
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as a trajectory surface. A set of unwrapping paths that does not intersect the trajectory

surface will yield unambiguous unwrapped phase satisfying the continuity condition.



Chapter 10

Applications of phase unwrapping

theory in microwave image

reconstruction

10.1 Method

As described in Chapters 3 and 6, in our log-magnitude phase form (LMPF) reconstruc-

tion algorithm, both the complex measurement and computed field data are transformed

into their amplitude and phase components. A phase unwrapping process is applied to

the phase portion with respect to the transmitter reference to make it continuous and dif-

ferentiable with respect to dielectric properties. Over a relatively large contrast range

and large imaging targets, this algorithm exhibits faster convergence and yields superior

images. However, when the target is large and the contrast is high, scattering nulls can

appear in the domain. Without properly choosing the unwrapping paths, the algorithm

may diverge. Even when the measured field data does not exhibit any complex null be-
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havior, nulls can occur in the computed distributions at intermediate iteration steps. If

not accounted for properly, these phase singularities can cause the algorithm to diverge

to an unwanted solution.

Unwrapping the computed field phases in the Gauss-Newton iterative reconstruc-

tion approach can be regarded as a dynamic phase unwrapping problem, where the

complex dielectric property k(r) varies from one iteration to the next as the algorithm

converges to a solution as discussed in Definition 8.2.12. The continuity condition of

the unwrapped phase imposed by the Gauss-Newton method requires the existence of

the first order derivative:

lim
∆k→0

‖U(Ez(k + ∆k), Γ) −U(Ez(k), Γ)‖
‖∆k‖ < ∞ (10.1)

where || · || denotes the l2-norm. As a result, the conclusions from Section 8.2.5 can be

applied directly to this situation. For convenience, we define the problem configuration

such that the source point is always the reference point and the unwrapping paths are

fixed for all measurement sites over the full set of iterations (or frames). If the unwrap-

ping paths do not have intersections with the trajectory set associated with parameter k,

then the unwrapped phases will be defined unambiguously and the continuity condition

(8.26) is satisfied.

This strategy is relatively straightforward, however, the key to its success is devel-

oping an algorithm for effectively detecting the cross over between unwrapping path

null trajectories. For 2-D or 3-D image reconstruction cases, we have devised a two-

path unwrapping strategy to cope with scattering nulls associated with high-contrast

scatterers. A diagram of this method in a tomographic imaging context is shown in

Figure 10.2. In this algorithm, we assume that the reconstruction process is initialized

at a low contrast state where no nulls are present in the domain. Therefore, at the first
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Figure 10.1: Selection of an unwrapping path during image reconstruction. (a) un-
wrapping path at the t-th iteration, (b) invalid unwrapping path, (c) valid unwrapping
path.

iteration, the unwrapped phases computed from two separate paths will be identical. In

all subsequent iterations, we compute the unwrapped phases Φt
ΓA

and Φt
ΓB

along path

ΓA and ΓB. Comparing absolute differences |Φt
ΓA
− Φt−1| and |Φt

ΓB
− Φt−1|, we choose

the path corresponding to the smaller difference as the valid path and use its unwrapped

phase for iteration t.
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Figure 10.2: Schematic plot of the two-path unwrapping strategy used in microwave
tomographical imaging reconstruction.

Below, we present results utilizing both simulated and experimental (i.e. an in vivo

breast imaging example) data. In the former, we illustrate the effectiveness when inter-
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Figure 10.3: Schematic diagram of the imaging configuration for the simulation.

mediate complex nulls appear in the computed forward solution. The latter illustrates a

case where the algorithm has been used to reconstruct an image of a breast which was

not possible without the use of the new unwrapping strategy.

10.2 Results

10.2.1 Reconstruction with the presence of scattering nulls

Here we present an imaging example to illustrate the robustness of the algorithm con-

sisting of a lossy cylinder with radius ρa = 3cm and electrical properties εr = 10

and σ = 0.4 S/m submerged in a background medium of 0.9% saline with εr = 77.1

and σ = 1.76 S/m. The cylinder is surrounded by an antenna array on a radius of

7.6 cm consisting of 16 line sources parallel to the axis of the cylinder (Figure 10.3).

A 2D dual-mesh pair is used with the circular reconstruction parameter mesh (radius

ρ = 6cm) conformal with the imaging zone. We utilized the LMPF-MFDR reconstruc-

tion algorithm as described in Section 3.2.3 and Section 6.2 operating at 900 MHz. The
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synthesized measurement data was computed by the analytical solution expressed in

terms of equation (9.2). We used three unwrapping strategies for each measurement

site as shown in Figure 10.4: (a) unwrapping through the domain and subsequently

traversing the shortest arc to the receiver, (b) starting from the source and unwrapping

along the shortest arc to the receiver and (c) the two-path strategy as described above.
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Γ
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Figure 10.4: Unwrapping strategies (a) strategy A, (b) strategy B, (c) strategy C.

The contrast of the object is sufficient to excite nulls in the imaging zone for all

sources. The reconstructed images are dramatically different for all three unwrapping

strategies shown in Figure 10.5 (a)-(c). The conductivity images for both (a) and (b)

are very noisy along with the permittivity image for (b). The permittivity image for

(a) appears to recover the proper value for the object but the background property is

incorrect. The recovered permittivity and conductivity images for case (c) match the

actual distribution quite well. In addition, Figure 10.5 (d) shows the reconstructed

images using the complex Gauss-Newton algorithm instead of the LMPF algorithm

and illustrates an example of the reconstruction converging to a local minima. A plot

of the relative error between the calculated and measured field values as a function of

iteration (Figure 10.6.) clearly indicates that the first two strategies diverged due to

inadequate processing of the scattering nulls. In both cases, the nulls appeared within

the imaging zone during the 4th iteration.
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Figure 10.5: Reconstructed permittivity and conductivity images using the different
unwrapping strategies. (a) unwrapping through imaging zone and subsequently with
the shortest arc to receiver (b) shortest arc to receiver, (c) 2-path strategy and (d) the
complex Gauss-Newton reconstruction.
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Figure 10.6: Relative errors of the three unwrapping strategies with respect to iteration
number

10.2.2 Reconstruction with intermediate nulls

The notion of intermediate nulls refers to cases where the phase singularities do not ap-

pear in the true scattering field; however, they are created and propagate into the imag-

ing zone during intermediate steps of the iterative reconstruction process and eventually

exit the zone by the time the algorithm has converged (if it does converge to an adequate

solution). During the Gauss-Newton iterative process, the reconstruction parameters do

not necessarily converge monotonically. In fact, the values often overshoot the final so-

lution and very often oscillate about the desired values until the oscillations are almost

completely damped at convergence. If the unwrapped phase continuity condition is vio-

lated at intermediate steps, it could significantly alter the algorithm behavior and cause

it to diverge. These types of nulls are readily processed by the two-path unwrapping

strategy.

The 2-D simulation example we presented here is for a “panda face” pattern shown

in Figure 10.7. A 15.2 cm diameter circular antenna array consisting of 16 dipole

antennas encircled the object. The imaging zone is a 14 cm diameter concentric circular

region. The “panda face” is a 9 cm diameter circle with the diameters for the eyes and
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Figure 10.7: Schematic diagram of the object and imaging configuration (dimensions
in meters).

ears being 2.4 and 3 cm, respectively. The “panda mouth” is a quarter of a concentric

annulus with an inner radius of 2.5 cm and outer radius of 3.5 cm between the angle of

−3π/4 and −π/4. The electrical properties of the background and different zones of the

“panda face” are listed in Table 1.

Regions εr σ(S/m)
background 76.9 1.8
panda face 55.0 1.2
panda eyes 15.0 0.3
panda ears 30.5 0.6

panda mouth 15.0 0.3

Table 10.1: The exact relative permittivity and conductivity values at 1000 MHz for all
zones in the “panda face” simulation.

The measurement data was computed at 1 GHz using a 2-D finite difference-time

domain (FDTD) method with a generalized perfectly matched layer(G-PML) as the ab-

sorbing boundary condition [51]. The forward solution domain was a 110 × 110 grid

surrounded by 12 layers of G-PML. For all 16 sources, the electric fields for the exact

property distribution do not contain any scattering nulls. We added noise (maximum

amplitude of -100 dB and 1◦ phase) to the amplitude and phase data respectively, which

is representative of our current hardware system [122]. The reconstruction utilized
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the LMPF algorithm. The reconstruction mesh conformed to the imaging zone and

was comprised of 281 parameter nodes with 524 triangular elements. The Levenberg-

Marquardt regularization parameter, λ, was fixed at 0.05 together with our spatial fil-

tering scheme (Section 3.2.3) with the averaging factor set to 0.1 for stabilizing the

convergence. The algorithm was initialized with a homogeneous distribution equal to

that of the background.
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Figure 10.8: Recovered dielectric profiles after 10 iterations using the two-path un-
wrapping strategy: (a) relative permittivity, (b) conductivity.

1.80
1.54
1.29
1.03
0.77
0.51
0.26
0.00

σ

(b)

90.00
77.14
64.29
51.43
38.57
25.71
12.86

0.00

εr

(a)

Figure 10.9: Recovered dielectric profiles after 10 iterations without considering the
scattering nulls: (a) relative permittivity, (b) conductivity.

Using the two-path unwrapping strategy, the object was successfully reconstructed

after 10 iterations with a relative electric field least squared error of 5% as shown in

Figure 10.8 (a) and (b). The locations, shapes and values of the features in the pattern

are quite close to their true values. It is interesting to note that at the third iteration,
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intermediate nulls appeared in the computed field solutions for several sources and dis-

appeared after the fourth iteration. Wrapped phase plots for the true object scattering

field distribution and the forward field computation at the third iteration for a single

antenna are compared in Figure 10.10. Note that the scattering null migrated inside the

antenna array for the third iteration (Figure 10.10 b), but retreated immediately after

that. Given that the unwrapping paths are usually either along the arc of the antenna or

along a path through the imaging zone, phase singularities within this zone are the ones

that impact the unwrapping. Without the correct phase unwrapping strategy, the recon-

struction diverged quickly after the third iteration (the solution after the 10th iteration

is shown in Figure 10.9).

10.2.3 Reconstruction of patient measurement

The scattering nulls together with intermediate nulls are frequently encountered in the

processing of breast cancer patient measurement data especially where there are high

contrast inclusions such as large tumors or cysts. Even for normal breasts, the scattered

field from the glandular tissue may also induce scattering nulls. A sample MRI image

is shown in Figure 10.11 to demonstrate inhomogeneities in a normal breast due to its

internal structures. In these cases, in order to use the LMPF algorithm, we must in-

corporate the two-path unwrapping strategy into the reconstruction algorithm to obtain

valid unwrapped phases.

In this example we reconstructed an image slice of a patient’s breast where the

woman was being treated with chemotherapy for a large tumor. The measurement data

was obtained with the tomographic microwave imaging system as in [122]. The pa-

tient had a large tumor located at her upper half breast close to chest wall. The high

contrast of the tumor to the fatty tissue background in the breast caused multiple phase
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Figure 10.10: Wrapped phase plots for (a) the true scattering field, (b) the forward field
computation at the 3rd iteration for a single transmitter (singularity present).
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Figure 10.11: MRI scan of a normal breast. The dark regions are fibroglandular tissues
which may have significantly high dielectric property values compared with the fatty
tissues in the background.

singularities during the reconstruction. We utilized the LMPF reconstruction with and

without the two-path unwrapping strategy, of which only the former one yielded rea-

sonable images (Figure 10.12) while the latter diverged. The tumor is clearly visible in

the reconstructed image which is in the correct location and has reasonably appropriate

values for the electrical properties of a typical tumor.
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Figure 10.12: Reconstructed single plane dielectric profiles of a patient breast that has
a large tumor, left: relative permittivity, right: conductivity.
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10.3 Conclusions

In summary, we have established a general mathematical framework for explaining

phase unwrapping including definitions and illustrations of particular properties related

to the uniqueness and closed-path phase unwrapping. The concept of dynamic versus

static phase unwrapping problems was introduced with special attention to applications

in microwave imaging. These included the phenomenon of scattering nulls in the high

contrast and high operating frequency cases and their behavior (i.e. paths of their tra-

jectories) as these parameters varied.

The path selection criteria for the dynamic phase unwrapping problem was imple-

mented in several microwave tomographic image reconstruction examples. The chal-

lenges of utilizing the LMPF algorithm were discussed from a dynamic phase unwrap-

ping perspective along with efficient unwrapping strategies. The success of these recon-

structions demonstrates the importance and efficiency of the our theory and analysis.





Appendix A

Mathematica code for the ADI FDTD

method update equations

The Mathematica code for the ADI update equation of the first substep, i.e. n→ n+1/2,

is written as

(******************************************************************)

(******** ADI FDTD step 1: n->n+1/2 ********)

(******************************************************************)

(*=========================Update Ex==============================*)

Px[i_,j_,k_]:=cAP[i,j-1,k-1]*Px_o[i,j,k]+

cBP[i,j-1,k-1]*((Hz[i,j,k]-Hz[i,j-1,k])-(Hy_o[i,j,k]-Hy_o[i,j,k-1]));

Qx[i_,j_,k_]:=cAEy[j-1]*Qx_o[i,j,k]+cBEy[j-1]*(Px[i,j,k]-Px_o[i,j,k]);

Ex[i_,j_,k_]:=cAEz[k-1]*Ex_o[i,j,k]+cBEz[k-1]*(cCHx[i]*Qx[i,j,k]-cDHx[i]*Qx_o[i,j,k]);

(*=========================Update Ey==============================*)

Py[i_,j_,k_]:=cAP[i-1,j,k-1]*Py_o[i,j,k]+

cBP[i-1,j,k-1]*((Hx[i,j,k]-Hx[i,j,k-1])-(Hz_o[i,j,k]-Hz_o[i-1,j,k]));

Qy[i_,j_,k_]:=cAEz[k-1]*Qy_o[i,j,k]+cBEz[k-1]*(Py[i,j,k]-Py_o[i,j,k]);

Ey[i_,j_,k_]:=cAEx[i-1]*Ey_o[i,j,k]+cBEx[i-1]*(cCHy[j]*Qy[i,j,k]-cDHy[j]*Qy_o[i,j,k]);
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(*=========================Update Ez==============================*)

Pz[i_,j_,k_]:=cAP[i-1,j-1,k]*Pz_o[i,j,k]+

cBP[i-1,j-1,k]*((Hy[i,j,k]-Hy[i-1,j,k])-(Hx_o[i,j,k]-Hx_o[i,j-1,k]));

Qz[i_,j_,k_]:=cAEx[i-1]*Qz_o[i,j,k]+cBEx[i-1]*(Pz[i,j,k]-Pz_o[i,j,k]);

Ez[i_,j_,k_]:=cAEy[j-1]*Ez_o[i,j,k]+cBEy[j-1]*(cCHz[k]*Qz[i,j,k]-cCHz[k]*Qz_o[i,j,k]);

(*=========================Update Hx==============================*)

Bx[i_,j_,k_]:=cAHy[j]*Bx_o[i,j,k]+

cBBy[j]*((Ey[i,j,k+1]-Ey[i,j,k])-(Ez_o[i,j+1,k]-Ez_o[i,j,k]));

Hx[i_,j_,k_]:=cAHz[k]*Hx_o[i,j,k]+cBHz[k]*(cCEx[i-1]*Bx[i,j,k]-cDEx[i-1]*Bx_o[i,j,k]);

(*=========================Update Hy==============================*)

By[i_,j_,k_]:=cAHz[k]*By_o[i,j,k]+

cBBz[k]*((Ez[i+1,j,k]-Ez[i,j,k])-(Ex_o[i,j,k+1]-Ex_o[i,j,k]));

Hy[i_,j_,k_]:=cAHx[i]*Hy_o[i,j,k]+cBHx[i]*(cCEy[j-1]*By[i,j,k]-cDEy[j-1]*By_o[i,j,k]);

(*=========================Update Hz==============================*)

Bz[i_,j_,k_]:=cAHx[i]*Bz_o[i,j,k]+

cBBx[i]*((Ex[i,j+1,k]-Ex[i,j,k])-(Ey_o[i+1,j,k]-Ey_o[i,j,k]));

Hz[i_,j_,k_]:=cAHy[j]*Hz_o[i,j,k]+cBHy[j]*(cCEz[k-1]*Bz[i,j,k]-cDEz[k-1]*Bz_o[i,j,k]);

where (i, j, k) is the index of the 3D field arrays and index (1,1,1) for each array is
located at the closest vector near the origin in Figure 5.5. The field components with
their name ended with “_o” denote the field at n-th time step, while those without this
suffix represent the field at the n + 1/2 time step. Similarly, the relationships for the
second substep, i.e. n + 1/2→ n + 1 is written as

(******************************************************************)

(******** ADI FDTD step 2: n+1/2->n+1 ********)

(******************************************************************)

(*=========================Update Ex==============================*)
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Px[i_,j_,k_]:=cAP[i,j-1,k-1]*Px_o[i,j,k]+

cBP[i,j-1,k-1]*((Hz_o[i,j,k]-Hz_o[i,j-1,k])-(Hy[i,j,k]-Hy[i,j,k-1]));

Qx[i_,j_,k_]:=cAEy[j-1]*Qx_o[i,j,k]+cBEy[j-1]*(Px[i,j,k]-Px_o[i,j,k]);

Ex[i_,j_,k_]:=cAEz[k-1]*Ex_o[i,j,k]+cBEz[k-1]*(cCHx[i]*Qx[i,j,k]-cDHx[i]*Qx_o[i,j,k]);

(*=========================Update Ey==============================*)

Py[i_,j_,k_]:=cAP[i-1,j,k-1]*Py_o[i,j,k]+

cBP[i-1,j,k-1]*((Hx_o[i,j,k]-Hx_o[i,j,k-1])-(Hz[i,j,k]-Hz[i-1,j,k]));

Qy[i_,j_,k_]:=cAEz[k-1]*Qy_o[i,j,k]+cBEz[k-1]*(Py[i,j,k]-Py_o[i,j,k]);

Ey[i_,j_,k_]:=cAEx[i-1]*Ey_o[i,j,k]+cBEx[i-1]*(cCHy[j]*Qy[i,j,k]-cDHy[j]*Qy_o[i,j,k]);

(*=========================Update Ez==============================*)

Pz[i_,j_,k_]:=cAP[i-1,j-1,k]*Pz_o[i,j,k]+

cBP[i-1,j-1,k]*((Hy_o[i,j,k]-Hy_o[i-1,j,k])-(Hx[i,j,k]-Hx[i,j-1,k]));

Qz[i_,j_,k_]:=cAEx[i-1]*Qz_o[i,j,k]+cBEx[i-1]*(Pz[i,j,k]-Pz_o[i,j,k]);

Ez[i_,j_,k_]:=cAEy[j-1]*Ez_o[i,j,k]+cBEy[j-1]*(cCHz[k]*Qz[i,j,k]-cCHz[k]*Qz_o[i,j,k]);

(*=========================Update Hx==============================*)

Bx[i_,j_,k_]:=cAHy[j]*Bx_o[i,j,k]+

cBBy[j]*((Ey_o[i,j,k+1]-Ey_o[i,j,k])-(Ez[i,j+1,k]-Ez[i,j,k]));

Hx[i_,j_,k_]:=cAHz[k]*Hx_o[i,j,k]+cBHz[k]*(cCEx[i-1]*Bx[i,j,k]-cDEx[i-1]*Bx_o[i,j,k]);

(*=========================Update Hy==============================*)

By[i_,j_,k_]:=cAHz[k]*By_o[i,j,k]+

cBBz[k]*((Ez_o[i+1,j,k]-Ez_o[i,j,k])-(Ex[i,j,k+1]-Ex[i,j,k]));

Hy[i_,j_,k_]:=cAHx[i]*Hy_o[i,j,k]+cBHx[i]*(cCEy[j-1]*By[i,j,k]-cDEy[j-1]*By_o[i,j,k]);

(*=========================Update Hz==============================*)

Bz[i_,j_,k_]:=cAHx[i]*Bz_o[i,j,k]+

cBBx[i]*((Ex_o[i,j+1,k]-Ex_o[i,j,k])-(Ey[i+1,j,k]-Ey[i,j,k]));
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Hz[i_,j_,k_]:=cAHy[j]*Hz_o[i,j,k]+cBHy[j]*(cCEz[k-1]*Bz[i,j,k]-cDEz[k-1]*Bz_o[i,j,k]);

where the symbols with suffix “_o” represent the fields at time step n + 1/2 and
those without the suffix are at time step n+ 1. To explicitly solve for fields at the newer
time step from the above relationships, the following code is submitted in Mathematica.
For example, to compute the update equation for Dx for the first sub-step, we need to
execute the following code

(******************************************************************)

(******** ADI FDTD step 1: n->n+1/2 ********)

(******************************************************************)

Px[i_,j_,k_]=.;

RHS =cAP[i,j-1,k-1]*Px_o[i,j,k]+

cBP[i,j-1,k-1]*((Hz[i,j,k]-Hz[i,j-1,k])-(Hy_o[i,j,k]-Hy_o[i,j,k-1]));

a1=-Coefficient[RHS-Px[i,j,k],Px[i,j-1,k]]//Simplify;

a2=-Coefficient[RHS-Px[i,j,k],Px[i,j,k]]//Simplify;

a3=-Coefficient[RHS-Px[i,j,k],Px[i,j+1,k]]//Simplify;

a4=RHS-Px[i,j,k]-a1*Px[i,j-1,k]-a2*Px[i,j,k]-a3*Px[i,j+1,k]//Simplify;

{a1, a2, a3, a4} // TableForm

which gives the implicit relationship in form of

a1Px[i, j − 1, k] + a2Px[i, j, k] + a3Px[i, j + 1, k] = a4 (A.1)

where

a1=-cBBx[i]cBEy[j-2]cBEz[k-1]cBHy[j-1]cBP[i,j-1,k-1]cCEz[k-1]cCHx[i]

a2=1+cBBx[i]cBEy[j-1]cBEz[k-1](cBHy[j-1]+cBHy[j])cBP[i,j-1,k-1]cCEz[k-1]cCHx[i]

a3=-cBBx[i]cBEy[j]cBEz[k-1]cBHy[j]cBP[i,j-1,k-1]cCEz[k-1]cCHx[i]

a4=cBBx[i]cBEy[j-2]cBEz[k-1]cBHy[j-1]cBP[i,j-1,k-1]cCEz[k-1]cCHx[i]Px[i,j-1,k]-

Px[i,j,k]-(1+cBBx[i]cBEy[j-1]cBEz[k-1](cBHy[j-1]+

cBHy[j])cBP[i,j-1,k-1]cCEz[k-1]cCHx[i])Px[i,j,k]+

cBBx[i]cBEy[j]cBEz[k-1]cBHy[j]cBP[i,j-1,k-1]cCEz[k-1]cCHx[i]Px[i,j+1,k]+
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cAP[i,j-1,k-1]Px_o[i,j,k]+cBP[i,j-1,k-1](Hy_o[i,j,k-1]-Hy_o[i,j,k]-

cAHy[j-1]Hz_o[i,j-1,k]+cAHy[j]Hz_o[i,j,k]-cBHy[j-1](-cDEz[k-1]Bz_o[i,j-1,k]+

cCEz[k-1](cAHx[i]Bz_o[i,j-1,k]+cBBx[i](-cAEz[k-1]Ex_o[i,j-1,k]+

cAEz[k-1]Ex_o[i,j,k]+Ey_o[i,j-1,k]-Ey_o[1+i,j-1,k]-

cBEz[k-1](-cDHx[i]Qx_o[i,j-1,k]+cCHx[i](cBEy[j-2](Px[i,j-1,k]-

Px_o[i,j-1,k])+cAEy[j-2]Qx_o[i,j-1,k]))+cBEz[k-1](-cDHx[i]Qx_o[i,j,k]+

cCHx[i](cBEy[j-1](Px[i,j,k]-Px_o[i,j,k])+cAEy[j-1]Qx_o[i,j,k])))))+

cBHy[j](-cDEz[k-1]Bz_o[i,j,k]+cCEz[k-1](cAHx[i]Bz_o[i,j,k]+

cBBx[i](-cAEz[k-1]Ex_o[i,j,k]+cAEz[k-1]Ex_o[i,j+1,k]+Ey_o[i,j,k]-

Ey_o[1+i,j,k]-cBEz[k-1](-cDHx[i]Qx_o[i,j,k]+cCHx[i](cBEy[j-1](Px[i,j,k]-

Px_o[i,j,k])+cAEy[j-1]Qx_o[i,j,k]))+cBEz[k-1](-cDHx[i]Qx_o[i,j+1,k]+

cCHx[i](cBEy[j](Px[i,j+1,k]-Px_o[i,j+1,k])+cAEy[j]Qx_o[i,j+1,k]))))))

A tridiagonal matrix equation is formed by cascading (A.1) for Px at various j

indices, which can be efficiently solved by traditional matrix solvers. The implicit

equation of Py and Pz can be derived in a similar fashion. Notice that the coefficients of

the tridiagonal matrix, i.e. a1,a2 and a3 do not contain any field qualities, so that the

LU decompositions of these tridiagonal matrices can be performed in advance of the

time stepping and only back-substitutions are required in each time-step.

Once the values of ~P are computed, the remaining field vectors, i.e. ~Q, ~E, ~B and ~H,

can be updated explicitly with the traditional UPML scheme (as the expressions in the

Mathematica code) since their RHS’s are already computed. Similarly, the relationships

for the second sub-step can be derived utilizing the identical process.





Appendix B

Statistical analysis of the

reconstruction algorithm with

measurement data

As was demonstrated in Chapter 2, the statistical properties of the measurement noise

is critically important in selecting appropriate parameter estimation strategies. In all

reconstruction approaches used in this thesis, we chose the OLS (ordinary least-square)

estimator for reconstructing the dielectric properties which assumes that the measure-

ment noise is additive and iid (identical independently distributed) satisfying the normal

distribution with zero mean and constant variance (Section 2.5). However, we did not

characterize the actual measurement noise properties obtained from our imaging system

to justify the above assumptions. This is the central task of this appendix.

A series of experiments were performed to facilitate the investigation to the mea-

surement noise. The scattered fields (in terms of dB amplitude and phase) were repeat-

edly measured 18 times with a small cylindrical object inside the imaging zone (the
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smaller cylinder used in Section 3.7.2) and is referred to as the raw measurement. In

the raw measurement, the amplitude and phase data are the differences between the

field scattered by the inhomogeneous structure and by the homogeneous background

medium, i.e.
∆γdB = |Einhomo|dB − |Ehomo|dB

∆φ = Φ(E)inhomo − Φ(E)homo (B.1)

where the superscript “inhomo” refers to the case with the target inside the imaging

zone while “homo” refers to the homogeneous background medium case; | · |dB denotes

the dB amplitude and Φ(·) denotes the phase. The quantities on the LHS are the raw

measurement which can be subsequently converted into complex form as

∆ER = 10
∆γdB

20 ∗ cos(∆φ)
∆EI = 10

∆γdB
20 ∗ sin(∆φ)

(B.2)

The subtraction of Ehomo, referred to as the calibration data, from Einhomo in (B.1) can

significantly reduce the systematic error of the imaging system including the cancel-

lation of the the gain imbalance between different channels, phase shift due to varied

cable lengths and so on. However, from the reconstruction algorithm perspective, only

the raw measurement data on the LHS, i.e. ∆γdB and ∆φ, are the input quantities. Prior

to the actual iterative reconstruction, a forward field solution with the homogeneous

background is computed, denoted as Ehomo
c , and the restored inhomogeneous field is

written as

Einhomo
r = Ehomo

c × (∆ER + j∆EI) (B.3)

and from which the dielectric properties are reconstructed. For a fixed forward method

and a given background medium, Ehomo
c is a constant distribution, therefore, the statis-

tical properties of (∆ER + j∆EI) should be analyzed.

To evaluate the appropriateness of the parameter estimation method, we first assume
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that the forward model is accurate. In other words, if the imaging system is noise

free, the predicted measurement computed from the forward model should be identical

to the actual measurement. In this case, we need to follow the traditional parameter

estimation theory (Section 2.5) and investigate the noise in the raw measurement data.

However, for reconstructions using real measured data, the forward model only has

limited accuracy. The justification of the estimation model becomes more difficult. A

practically useful strategy is to look at the statistical properties of the residual error

∆Eres produced by the iterative reconstruction algorithm [41]. The residual error can be

expressed as

∆Eres = Einhomo
r − F(k2

recon) (B.4)

where Einhomo
r is the LHS of (B.3), F denotes the forward model and k2

recon is the re-

constructed dielectric property vector. The residual error reflects both the influences

from the measurement data and the forward model accuracy. The investigation on the

residual error can be found in Section B.2.

B.1 Analysis of the raw measurement

With the repeated measurement data at 1100 MHz (which is a typical frequency used

in our reconstructions), the variances and the means of the data were computed at each

data point, from which, the error bound diagram of the data is plotted in Figure B.1. In

the figure, the dotted lines above and below all solid lines are located at m ± 3s where

m is the vector of mean values and s is the vector of standard deviations. Note that the

x-axis in the plot is the index for all the transmitter/receiver pairs. In this case, there are

16 transmitters and 15 receivers per transmitter making the total length of 240.

In order to characterize the distribution of the measurement noise, the data is first
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Figure B.1: Error bound plots of the (a) real and (b) imaginary parts of the raw mea-
surement.

standardized by the mean and standard deviation by

x̃ = x −m
s (B.5)

then, we plotted the histogram plots of the standardized measurement noise which are

shown in Figure B.2 from which a symmetric distribution feature can be observed. The
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Figure B.2: Histogram plots of the (a) real and (b) imaginary parts of the standardized
measurement noise.
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standardized data is subsequently analyzed by the quantile-quantile plot (QQ-plot) with

respect to different symmetric probability density functions (PDF) using a MATLAB

software package. The output of the analysis for the real and imaginary data against the

normal distribution is shown in Figure B.3.
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Figure B.3: Quantile-quantile plots of the (a) real and (b) imaginary parts of the stan-
dardized measurement noise against normal distribution.

We also tested the measurement noise with respect to a uniform distribution (Figure

B.4), a logistic distribution (Figure B.5) and a Laplace distribution (Figure B.6) [201].

From all of these QQ-plots, the normal distribution seems to be the most appropriate

model to describe the raw measurement noise. This is an expected conclusion for most

measurement systems because within these systems, a large number of independent fac-

tors effect the data. From central limit theorem [135], the summation of these random

effects is approximately a normal distribution.

In our log-magnitude phase form (LMPF) reconstruction (Section 3.2.3), the log-

amplitude and phase measurements are directly used in the estimation process based

on minimizing sum-of-square functions. Therefore, we need to investigate the noise in

the dB amplitude and phase data as well. We performed a similar analysis as that for
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Figure B.4: Quantile-quantile plot of the (a) real and (b) imaginary parts of the stan-
dardized measurement noise against a uniform distribution.
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Figure B.5: Quantile-quantile plot of the (a) real and (b) imaginary parts of the stan-
dardized measurement noise against a logistic distribution.
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Figure B.6: Quantile-quantile plot of the (a) real and (b) imaginary parts of the stan-
dardized measurement noise against a Laplace distribution.

the real/imaginary data, and the histogram plot as well as the QQ-plot against a normal

distribution are shown in Figures B.7 and B.8, respectively. From the QQ-plot, one may

notice that the amplitude distribution is very close to that of the real part in Figure B.3,

and the distribution of the phase data is similar to that of the imaginary part of the raw

measurement. This is reasonable because when the size or contrast of the scatterer is

small, the entries in the phase measurement ∆φ are small which results in cos(∆φ)→ 1

and sin(∆φ) → ∆φ. The entries in ∆γdB are also close to zero. From B.2, the statistical

properties of ∆γdB are directly transferred to ∆ER and similarly from ∆φ to ∆EI . This

demonstrates that the dB amplitude/phase measurements can also be approximated as

normal distributions when the scattered field is weak. Consequently, in the cases where

the forward model is accurate, both the traditional complex version or LMPF version of

Gauss-Newton reconstructions are both practically appropriate methods in estimating

the dielectric properties for these cases.

One may also notices from Figure B.1 that even the distributions of the measure-

ment can be viewed as a normal distribution. The variances of the measurement vary
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Figure B.7: Histogram plot of the (a) dB amplitude and (b) phase of the raw measure-
ment.
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Figure B.8: Quantile-quantile plot of the (a) dB amplitude and (b) phase of the raw
measurement noise against a normal distribution.
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with respect to the relative positions of the receiver to the transmitter as well as with

respect to the operating frequency (not shown). In this case, the weighted least-square

(WLS) estimator is the more appropriate choice than the OLS estimator. A covariance

matrix C of the raw measurement noise should be estimated at the selected recon-

struction frequency prior to the reconstruction and a weighting matrix W needs to be

constructed from equation (B.3) and used in the iterative least-square update equation

(2.53).

B.2 Analysis on residual error

In this section, the statistical properties of the residual error in an iterative scheme

are investigated. Intuitively, these properties are influenced by both the measurement

noise and a complex image reconstruction process (including forward model accuracy,

regularization, smoothing and so on). Utilizing the repetition measurement data set

used in the previous section, we performed reconstructions with our traditional Gauss-

Newton iterative algorithm. The configuration of the reconstruction was identical to the

phantom experiments in Chapter 3. After 20 iterations, the residual error vector was

recorded for each input data set. Consequently, 18 groups of residual error vectors were

obtained for all measurement data sets.

A scatter plot of the residual error with respect to the amplitude of the input mea-

surement data Einhomo
r is shown in Figure B.9 (a). From this figure, it is quite obvi-

ous that the variation of the residual error amplitude becomes larger when |Einhomo
r |

increases. Transforming the scatter plot to a log scale in both axes (Figure B.9 b), the

data points are approximately bounded by two parallel lines which indicates that the

variance of the residual error in the log scale is approximately equal across various
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Figure B.9: Scatter plots between the amplitude of the residual error and the amplitude
of the measurement data in (a) linear-linear scale, and (b) log-log scale.

measurement amplitude scales. In the variance analysis in parameter estimation, this is

referred to as “homoscedasticity”. For the results presented in Figure B.9 (a), the error

is heteroscedasticity. It has been shown that heteroscedasticity in the data will result in

low efficiency in the parameter estimation [139, 7]. This indicates that the logarithm

transform used in the LMPF algorithm may substantially enhance the efficiency of the

estimator and partially explains the improved image quality generally observed using

this algorithm.



Appendix C

3D FDTD modelling of the

illumination tank

In all of our forward field computations, we solved an unbounded radiation problem

outside the imaging zone where we assume the space is filled by the background

medium. However, in actual experimental settings, the lossy background medium only

extends to the boundary of our illumination tank and the exterior of the tank is filled

by air. In order to test the validity of our approximation, we compute the forward field

with and without the presence of the tank. The tank has dimension 40 × 40 × 40 cm3

centered at the origin. A circular antenna array with radius 7.62 cm is placed at z = 0

plane and is also centered at the origin. The tank is filled with 83% glycerin solution

(εr = 25, σ = 1.0 S/m) while the rest of the space is filled by air (εr = 1, σ = 0 S/m).

The forward fields computed at 900 MHz for the two cases are shown in Figure C.1

and C.2 where the perimeter of the antenna array and the tank are marked by the cir-

cle and the square, respectively. From these two plots, the field distributions within

the antenna array (the circular area) are very close to each other which validates the

effectiveness of our exterior radiation assumptions. Consequently, the modelling space
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can be compressed close to the antenna array providing a considerable computational

savings compared with modelling the whole tank.
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Figure C.1: The computed field amplitude (log10(|Ez|)) along z = 0 plane (a) without
and (b) with the presence of the tank.
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Figure C.2: The computed field phases (radian) along z = 0 plane (a) without and (b)
with the presence of the tank.





Appendix D

Iso-sensitivity ovals and surfaces

A single row of the Jacobian matrix represents the sensitivity map across the imaging

domain for a given transmit/receive antenna pair with respect to perturbations of the

parameters at different locations. In our discussion in Chapter 7, this sensitivity map can

be expressed by the multiplication of two Green’s functions of the Helmholtz equation,

i.e.

J((~rs,~rr),~r) = g(~r,~rs)g(~r,~rr) (D.1)

and the iso-sensitivity curve (in 2D) or surface (in 3D) is defined by

g(~r,~rs)g(~r,~rr) = c (D.2)

where c is a constant. For different c values, the curves defined by (D.2) comprise a

contour plot which illustrates the measurement sensitivity over space. We present two

examples here. The first example is the homogeneous medium in the 2D space. In this

case, the Green’s function is written as

g(~r,~rs) =
j
4

H(1)
0 (k0|~r − ~rs|) (D.3)
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where k is the complex wave number, and the iso-sensitivity curve is defined by

H(1)
0 (k0|~r − ~rs|)H(1)

0 (k0|~r − ~rr |) = c (D.4)

Let ~rs = (7, 0) cm and ~rr = (−7, 0) cm, let εr = 77, σ = 1.7 S/m be the dielectric

properties of the background, the sensitivity contour plot is shown in Figure D.1.

−0.1 0 0.1
−0.1

0

0.1

Figure D.1: Iso-sensitivity curves for infinitely large 2D homogeneous background
medium.

Similarly, for infinitely large homogeneous medium in 3D space, the corresponding

Green’s function is written as

g(~r,~rs) =
exp jk|~r − ~rs|

4π|~r − ~rs|
(D.5)

We computed the iso-sensitivity surfaces for the case where ~rs = (7, 0, 0) cm and ~rr =

(−7, 0, 0) cm with saline background, which are shown in Figure D.2.
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Figure D.2: Iso-sensitivity surfaces for infinitely large 3D homogeneous background
medium (cut from z = 0 plane).





Appendix E

Proof of the nodal adjoint matrix

reconditioning

For linear Lagrange elements, the integration of the multiplications of the basis func-

tions can be analytically computed by

< φm
1 φ

n
2φ

l
3 >= 2A m!n!l!

(m + n + l + 2)! (E.1)

for 2D elements and

< φm
1 φ

n
2φ

l
3φ

k
4 >= 6V m!n!l!k!

(m + n + l + k + 3)! (E.2)
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for 3D elements where A is the area of a 2D triangle and V is the volume of a 3D

tetrahedron. From (E.1), we can derive

∑M
i=1

∑M
j=1 < φiφ jφ1 > = < φ1φ1φ1 > + < φ1φ2φ1 > + < φ1φ3φ1 >

+ < φ2φ1φ1 > + < φ2φ2φ1 > + < φ2φ3φ1 >

+ < φ3φ1φ1 > + < φ3φ2φ1 > + < φ3φ3φ1 >

= A
10 +

A
30 +

A
30 +

A
30 +

A
30 +

A
60 +

A
30 +

A
60 +

A
30

= A
M

(E.3)

where M = 3 is the node number per element. Similarly, we can prove
∑M

i=1
∑M

j=1 < φiφ jφ2 > =

∑M
i=1

∑M
j=1 < φiφ jφ3 > =

A
M . For 3D elements, similar conclusions can be made, i.e.

∑M
i=1

∑M
j=1 < φiφ jφk > =

V
M for k = 1, · · · ,M where M = 4. With these conclusions, the

reconditioning of the D matrices in Section 5.1.2 can be easily processed.



Appendix F

Common methods in computational

electromagnetics

The following diagram summarizes the common computational methods for electro-

magnetic field calculations.
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Figure F.1: Computational methods for EM modelling
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mathematical physics and analysis. AMS, 1986.

[105] C. L. Lawson and R. J. Hanson. Solving Least Squares Problems. Englewood

Cliffs, NJ: PrenticeHall, 1974.

[106] G. Lazzi. Unconditionally stable D-H FDTD formulation with anisotropic PML

boundary conditions. Microwave and Wireless Components Letters, IEEE [see

also IEEE Microwave and Guided Wave Letters], 11(4):149–151, Apr 2001.

[107] J. M. Lee. Introduction to Topological Manifolds. Springer-Verlag New York,

2000.



BIBLIOGRAPHY 345

[108] K. Levenberg. A Method for the Solution of Certain Problems in Least Squares.

Quart. Appl. Math., 2:164–168, 1944.

[109] B. Lewin. Genes VIII. Pearson Prentice Hall, Upper Saddle River, NJ, 2004.

[110] D. Li, P. M. Meaney, and K. D. Paulsen. Conformal microwave imaging for

breast cancer detection. IEEE Transactions on Microwave Theory and Tech-

niques, 51(4):1179–1186, Apr 2003.

[111] D. Li, P. M. Meaney, T. Raynolds, S. A. Pendergrass, M. W. Fanning, and K. D.

Paulsen. A parallel-detection microwave spectroscopy system for breast imag-

ing. Review of Scientific Instruments, 75(7):2305–2313, 2004.

[112] C.-T. Liauh, R. G. Hills, and R. B. Roemer. Comparison of the Adjoint and

Influence Coefficient Methods for Solving the Inverse Hyoperthermia Problem.

J. of Biomechanical Eng., 115:63–71, 1993.

[113] H. Ling, R.-C. Chou, and S.-W. Lee. Shooting and bouncing rays: calculating

the RCS of an arbitrarily shaped cavity. IEEE Transactions on Antennas and

Propagation, 37(2):194–205, Feb 1989.

[114] G. Liu and S. D. Gedney. Perfectly matched layer media for an uncondition-

ally stable three-dimensional ADI-FDTD method. Microwave and Guided Wave

Letters, IEEE [see also IEEE Microwave and Wireless Components Letters],

10(7):61–263, Jul 2000.

[115] Q. H. Liu, Z. Q. Zhang, T. T. Wang, J. A. Bryan, G. A. Ybarra, L. W. Nolte, and

W. T. Joines. Active microwave imaging. I. 2-D forward and inverse scattering

methods. IEEE Trans. Microwave Theory Tech., 50:123–133, 2002.



346 BIBLIOGRAPHY

[116] Michael A. Lombardi, Lisa M. Nelson, Andrew N. Novick, and Victor S. Zhang.

Time and frequency measurements using the global positioning system. Techni-

cal report, National instutute of standards and technology, time and frequency

division, Aug 2001.

[117] C. C. Lu and W. C. Chew. A multilevel algorithm for solving boundary integral

equations of wave scattering. Microwave Opt. Technol. Lett., 7(10):466–470, Jul

1994.

[118] B. LutherDavies, J. Christou, and Yu. S. Kivshar V. Tikhonenko. Optical vortex

solitons: experiment versus theory. J. Opt. Soc. Am. B, 14:3045–3053, 1997.

[119] R. Maini, M. F. Iskander, and C. H. Durney. On electromagnetic imaging using

linear reconstruction techniques. Proceedings of the IEEE, 68:1550–1552, Dec

1980.

[120] J.J. Mallorqui. Active microwave tomography. IEE Colloquium on Functional

Imaging, 5:6/1 – 6/3, Jan 1994.

[121] D. Marquardt. An Algorithm for Least-Squares Estimation of Nonlinear Param-

eters. SIAM J. Appl. Math, 11:431–441, 1963.

[122] P. M. Meaney, M. W. Fanning, D. Li, S. P. Poplack, and K. D. Paulsen. A clinical

prototype for active microwave imaging of the breast. IEEE Trans. Microwave

Theory Tech., 48:1841–1853, 2000.

[123] P. M. Meaney, M. W. Fanning, K. D. Paulsen, D. Li, S. A. Pendergrass, Q. Fang,

and K. L. Moodie. Microwave thermal imaging: Initial in vivo experience with

a single heating zone. International Journal of Hyperthermia, 19(6):617–641,

Nov 2003.



BIBLIOGRAPHY 347

[124] P. M. Meaney, K. D. Paulsen, and J. T. Chang. Near-field microwave imaging of

biologically-based materials using a monopole transceiver system. IEEE Trans.

on Microwave Theory and Tech., 46(1):31–45, 1998.

[125] P. M. Meaney, K. D. Paulsen, J. T. Chang, and M. Fanning. Compensation for

nonactive array element effects in a microwave imaging system: part II – imaging

results. IEEE Trans. on Med. Imag., 18:508–518, 1999.

[126] P. M. Meaney, K. D. Paulsen, S. Geimer, S. Haider, and M. W. Fanning. Quan-

tification of 3D field effects during 2D microwave imaging. IEEE Trans. on

Biomed. Eng., 49:708–720, 2002.

[127] P. M. Meaney, K. D. Paulsen, and T. P. Ryan. Two-dimensional hybrid element

image reconstruction for TM illumination. IEEE Trans. Antennas Propagat.,

43:239–247, 1995.

[128] P. M. Meaney, S. A. Pendergrass, M. W. Fanning, D. Li, and K. D. Paulsen. Im-

portance of using a reduced contrast coupling medium in 2D microwave breast

imaging. Journal of Electromagnetic Waves and Applications, 17:333–355,

2003.

[129] P. M. Meaney, N. K. Yagnamurthy, and K. D. Paulsen. Pre-scaling of recon-

struction parameter components to reduce imbalance in image recovery process.

Physics in Medicine and Biology, 47:1101–1119, 2002.

[130] R. Mittra and M. Kuzuoglu. A review of some recent advances in perfectly-

matched absorbers for mesh truncation in FEM. Antennas and Propagation So-

ciety International Symposium, 1997. IEEE., 1997 Digest, 2:1302 – 1305, Jul

1997.



348 BIBLIOGRAPHY

[131] M. Miyakawa. Tomographic measurement of temperature change in phantoms

of the human body by chirp radar-type microwave computed tomography. Med.

Biol. Eng. Comput., 31:S31–S36, 1993.

[132] M. Miyakawa, K. Orikasa, M. Bertero, F. Conte P. Boccacci, and M. Piana.

Experimental validation of a linear model for data reduction in chirp-pulse mi-

crowave CT. IEEE Trans. Med. Imag., 21:385–395, 2002.

[133] M. Moghaddam and W. C. Chew. onlinear two-dimensional velocity profile

inversion using time domain data. IEEE Transactions on Geoscience and Remote

Sensing, 30(1):147 – 156, Jan 1992.

[134] M. Moghaddam, W. C. Chew, and M. Oristaglio. Comparison of the Born itera-

tive method and Tarantola’s method for an electromagnetic time-domain inverse

problem. Int. J. Imaging Syst. Tech., 3:318–333, 1991.

[135] D. C. Montgomery and G. C. Runger. Applied Statistics and Probability for

Engineers, 2nd edition. John Wiley & Sons, New York, 1999.

[136] S. K. Moore. Better breast cancer detection. IEEE Spectrum, 38(5):50–54, 2001.

[137] V. A. Morozov. On the solution of functional equations by the method of regu-

larization. Soviet Mathematics Doklady, 7:414–417, 1966.

[138] V. A. Morozov. Methods for solving incorrectly posed problems. Springer Ver-

lag, New York, 1984.

[139] H. G. Muller and U. Stadtmuller. Estimation of heteroscedasticity in regression

analysis. Ann. Statist., 15:610–625, 1987.



BIBLIOGRAPHY 349

[140] T. Namiki. Unconditionally stable FDTD algorithm for solving three-

dimensional Maxwell’s equations. Microwave Symposium Digest., 2000 IEEE

MTT-S International, 1:11–16, Jun 2000.

[141] P. A. Nelson and Y. Kahana. Spherical harmonics, singular value decomposition

and the head related transfer function. Special edition of the Journal of Sound

and Vibration, 239(4):607–637, 2001.

[142] P. A. Nelson and S. H. Yoon. Estimation of acoustic source strength by inverse

methods: Part I, Conditioning of the inverse problem; Part II, experimental in-

vestigation of methods for choosing regularisation parameters. Journal of Sound

and Vibration, 233(4):639–701, 2000.

[143] D. Neshev and Yu. S. Kivshar A. Nepomnyashchy. Nonlinear Aharonov-Bohm

scattering by optical vortices. Phys. Rev. Lett., 87, 043901-4, 2001.

[144] S. P. Novikov. Topology I: General Survey. Springer-Verlag Berlin Heidelberg,

1996.

[145] J. F. Nye. Unfolding of higher-order wave dislocations. J. Opt. Soc. Am. A,

15(5), May 1998.

[146] J. F. Nye and M. V. Berry. Dislocations in wave trains. Proc. Roy. Soc. Lond. A,

336:165–190, 1974.

[147] A. V. Oppenheim and J. S. Lim. The importance of phase in signals. In Proceed-

ings of the IEEE, 69:529–541, May 1981.

[148] A. V. Oppenheim, A. S. Willsky, and N. S. Hamid. Signals and Systems (2nd

Edition). Prentice Hall Engineering, Science & Math, 1996.



350 BIBLIOGRAPHY

[149] G. P. Otto and W. C. Chew. Microwave inverse scattering - local shape function

imaging for improved resolution of strong scatterers. IEEE Trans. Microwave

Theory and Techniques, 42(1):137–141, Jan 1994.
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